2,724 research outputs found

    Caso clínico

    Get PDF
    Niña de 10 años traída por sus padres al Servicio de Emergencias por contracciones tónicas en ambas manos, en forma de espasmos carpianos de presentación súbita y prolongada (2 horas de evolución). Las manos adoptaban una posición flexionada con el pulgar fuertemente aproximado y los restantes dedos extendidos y unidos entre sí, pero flexionados en la articulación metacarpofalángica. Igualmente, ambos antebrazos se colocaban en supinación forzada y semiflexión. La paciente exhibía un relativo buen estado general y un adecuado desarrollo pondoestatural, se encontraba lúcida, eutímica, afebril y eupneica, con FC de 75/min, TA de 110/65 mmHg, hemodinámicamente compensada y con facies algo perturbada, con cierto aspecto de enojo. El resto del examen físico se hallaba dentro de límites normales. El diagnóstico semiológico al ingreso fue de espasmos carpianos, a descartar etiología

    Instabilities of a liquid layer locally heated on its free surface

    Get PDF
    International audienceWe report experimental results concerning patterns in a model experiment built to studybuoyant-thermocapillary-driven flows. The fluid is situated in a cooled cylindrical container andlocally heated on its free surface. The resulting temperature gradient induces a basic flow whichdraws the surface fluid from the hot center toward the cold boundary. When the gradient is increasedand depending on the height of liquid, the basic flow destabilizes into different stationary patterns.Above a second threshold, the patterns become time-dependent. These different instabilities arecharacterized and compared to recent theoretical results

    Herschel observations of EXtra-Ordinary Sources: Analysis of the HIFI 1.2 THz Wide Spectral Survey Toward Orion KL II. Chemical Implications

    Get PDF
    We present chemical implications arising from spectral models fit to the Herschel/HIFI spectral survey toward the Orion Kleinmann-Low nebula (Orion KL). We focus our discussion on the eight complex organics detected within the HIFI survey utilizing a novel technique to identify those molecules emitting in the hottest gas. In particular, we find the complex nitrogen bearing species CH3_{3}CN, C2_{2}H3_{3}CN, C2_{2}H5_{5}CN, and NH2_{2}CHO systematically trace hotter gas than the oxygen bearing organics CH3_{3}OH, C2_{2}H5_{5}OH, CH3_{3}OCH3_{3}, and CH3_{3}OCHO, which do not contain nitrogen. If these complex species form predominantly on grain surfaces, this may indicate N-bearing organics are more difficult to remove from grain surfaces than O-bearing species. Another possibility is that hot (Tkin_{\rm kin}\sim300 K) gas phase chemistry naturally produces higher complex cyanide abundances while suppressing the formation of O-bearing complex organics. We compare our derived rotation temperatures and molecular abundances to chemical models, which include gas-phase and grain surface pathways. Abundances for a majority of the detected complex organics can be reproduced over timescales \gtrsim 105^{5} years, with several species being under predicted by less than 3σ\sigma. Derived rotation temperatures for most organics, furthermore, agree reasonably well with the predicted temperatures at peak abundance. We also find that sulfur bearing molecules which also contain oxygen (i.e. SO, SO2_{2}, and OCS) tend to probe the hottest gas toward Orion KL indicating the formation pathways for these species are most efficient at high temperatures.Comment: 31 pages, 6 figures, 1 Table, accepted to the Astrophysical Journa

    A nuclease that cuts specifically in the ribosome binding site of some T4 mRNAs.

    Full text link

    Nonresonant microwave absorption in epitaxial La-Sr-Mn-O films and its relation to colossal magnetoresistance

    Get PDF
    We study magnetic-field-dependent nonresonant microwave absorption and dispersion in thin La0.7_{0.7}Sr0.3_{0.3}MnO3_{3} films and show that it originates from the colossal magnetoresistance. We develop the model for magnetoresistance of a thin ferromagnetic film in oblique magnetic field. The model accounts fairly well for our experimental findings, as well as for results of other researchers. We demonstrate that nonresonant microwave absorption is a powerful technique that allows contactless measurement of magnetic properties of thin films, including magnetoresistance, anisotropy field and coercive field.Comment: 20 pages, 11 figure

    Dynamical structure of the inner 100 AU of the deeply embedded protostar IRAS 16293-2422

    Full text link
    A fundamental question about the early evolution of low-mass protostars is when circumstellar disks may form. High angular resolution observations of molecular transitions in the (sub)millimeter wavelength windows make it possible to investigate the kinematics of the gas around newly-formed stars, for example to identify the presence of rotation and infall. IRAS 16293-2422 was observed with the extended Submillimeter Array (eSMA) resulting in subarcsecond resolution (0.46" x 0.29", i.e. \sim 55 ×\times 35~AU) images of compact emission from the C17^{17}O (3-2) and C34^{34}S (7-6) transitions at 337~GHz (0.89~mm). To recover the more extended emission we have combined the eSMA data with SMA observations of the same molecules. The emission of C17^{17}O (3-2) and C34^{34}S (7-6) both show a velocity gradient oriented along a northeast-southwest direction with respect to the continuum marking the location of one of the components of the binary, IRAS16293A. Our combined eSMA and SMA observations show that the velocity field on the 50--400~AU scales is consistent with a rotating structure. It cannot be explained by simple Keplerian rotation around a single point mass but rather needs to take into account the enclosed envelope mass at the radii where the observed lines are excited. We suggest that IRAS 16293-2422 could be among the best candidates to observe a pseudo-disk with future high angular resolution observations.Comment: Accepted for publication in ApJ, 18 pages, 10 figure

    Beam test results of 3D fine-grained scintillator detector prototype for a T2K ND280 neutrino active target

    Full text link
    An upgrade of the long baseline neutrino experiment T2K near detector ND280 is currently being developed with the goal to reduce systematic uncertainties in the prediction of number of events at the far detector Super-Kamiokande. The upgrade program includes the design and construction of a new highly granular fully active scintillator detector with 3D WLS fiber readout as a neutrino target. The detector of about 200×180×60 cm3200\times 180\times 60~cm^3 in size and a mass of \sim2.2~tons will be assembled from about 2×1062\times10^6 plastic scintillator cubes of 1×1×1 cm31\times1\times1~cm^3. Each cube is read out by three orthogonal Kuraray Y11 Wave Length Shifting (WLS) fibers threaded through the detector. A detector prototype made of 125 cubes was assembled and tested in a charged particle test beam at CERN in the fall of 2017. This paper presents the results obtained on the light yield and timing as well as on the optical cross-talk between the cubes.Comment: 5 pages, 8 figure

    Universal dephasing in a chiral 1D interacting fermion system

    Full text link
    We consider dephasing by interactions in a one-dimensional chiral fermion system (e.g. a Quantum Hall edge state). For finite-range interactions, we calculate the spatial decay of the Green's function at fixed energy, which sets the contrast in a Mach-Zehnder interferometer. Using a physically transparent semiclassical ansatz, we find a power-law decay of the coherence at high energies and zero temperature (T=0), with a universal asymptotic exponent of 1, independent of the interaction strength. We obtain the dephasing rate at T>0 and the fluctuation spectrum acting on an electron.Comment: 5 pages, 3 figures; minor changes, version as published
    corecore