89 research outputs found

    Unsuspected task for an old team: Succinate, fumarate and other Krebs cycle acids in metabolic remodeling

    Get PDF
    AbstractSeventy years from the formalization of the Krebs cycle as the central metabolic turntable sustaining the cell respiratory process, key functions of several of its intermediates, especially succinate and fumarate, have been recently uncovered. The presumably immutable organization of the cycle has been challenged by a number of observations, and the variable subcellular location of a number of its constitutive protein components is now well recognized, although yet unexplained. Nonetheless, the most striking observations have been made in the recent period while investigating human diseases, especially a set of specific cancers, revealing the crucial role of Krebs cycle intermediates as factors affecting genes methylation and thus cell remodeling. We review here the recent advances and persisting incognita about the role of Krebs cycle acids in diverse aspects of cellular life and human pathology

    Rapid determination of tricarboxylic acid cycle enzyme activities in biological samples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the last ten years, deficiencies in tricarboxylic acid cycle (TCAC) enzymes have been shown to cause a wide spectrum of human diseases, including malignancies and neurological and cardiac diseases. A prerequisite to the identification of disease-causing TCAC enzyme deficiencies is the availability of effective enzyme assays.</p> <p>Results</p> <p>We developed three assays that measure the full set of TCAC enzymes. One assay relies on the sequential addition of reagents to measure succinyl-CoA ligase activity, followed by succinate dehydrogenase, fumarase and, finally, malate dehydrogenase. Another assay measures the activity of α-ketoglutarate dehydrogenase followed by aconitase and isocitrate dehydrogenase. The remaining assay measures citrate synthase activity using a standard procedure. We used these assays successfully on extracts of small numbers of human cells displaying various severe or partial TCAC deficiencies and on frozen heart homogenates from heterozygous mice harboring an SDHB gene deletion.</p> <p>Conclusion</p> <p>This set of assays is rapid and simple to use and can immediately detect even partial defects, as the activity of each enzyme can be readily compared with one or more other activities measured in the same sample.</p

    Deep Learning Approaches Applied to Image Classification of Renal Tumors: A Systematic Review

    Get PDF
    Renal cancer is one of the ten most common cancers in the population that affects 65,000 new patients a year. Nowadays, to predict pathologies or classify tumors, deep learning (DL) methods are effective in addition to extracting high-performance features and dealing with segmentation tasks. This review has focused on the different studies related to the application of DL techniques for the detection or segmentation of renal tumors in patients. From the bibliographic search carried out, a total of 33 records were identified in Scopus, PubMed and Web of Science. The results derived from the systematic review give a detailed description of the research objectives, the types of images used for analysis, the data sets used, whether the database used is public or private, and the number of patients involved in the studies. The first paper where DL is applied compared to other types of tumors was in 2019 which is relatively recent. Public collection and sharing of data sets are of utmost importance to increase research in this field as many studies use private databases. We can conclude that future research will identify many benefits, such as unnecessary incisions for patients and more accurate diagnoses. As research in this field grows, the amount of open data is expected to increase.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This article is based upon work from COST Action HARMONISATION (CA20122). This research has been partially funded by the Spanish Government by the project PID2021-127275OB-I00, FEDER “Una manera de hacer Europa”

    HIF2α reduces growth rate but promotes angiogenesis in a mouse model of neuroblastoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HIF2α/EPAS1 is a hypoxia-inducible transcription factor involved in catecholamine homeostasis, vascular remodelling, physiological angiogenesis and adipogenesis. It is overexpressed in many cancerous tissues, but its exact role in tumour progression remains to be clarified.</p> <p>Methods</p> <p>In order to better establish its function in tumourigenesis and tumour angiogenesis, we have stably transfected mouse neuroblastoma N1E-115 cells with the native form of HIF2α or with its dominant negative mutant, HIF2α (1–485) and studied their phenotype <it>in vitro </it>and <it>in vivo</it>.</p> <p>Results</p> <p><it>In vitro </it>studies reveal that HIF2α induces neuroblastoma cells hypertrophy and decreases their proliferation rate, while its inactivation by the HIF2α (1–485) mutant leads to a reduced cell size, associated with an accelerated proliferation. However, our <it>in vivo </it>experiments show that subcutaneous injection of cells overexpressing HIF2α into syngenic mice, leads to the formation of tumour nodules that grow slower than controls, but that are well structured and highly vascularized. In contrast, HIF2α (1–485)-expressing neuroblastomas grow fast, but are poorly vascularized and quickly tend to extended necrosis.</p> <p>Conclusion</p> <p>Together, our data reveal an unexpected combination between an antiproliferative and a pro-angiogenic function of HIF2α that actually seems to be favourable to the establishment of neuroblastomas <it>in vivo</it>.</p

    In Vivo Detection of Succinate by Magnetic Resonance Spectroscopy as a Hallmark of SDHx Mutations in Paraganglioma

    Get PDF
    International audiencePurpose: Germline mutations in genes encoding mitochon-drial succinate dehydrogenase (SDH) are found in patients with paragangliomas, pheochromocytomas, gastrointestinal stromal tumors, and renal cancers. SDH inactivation leads to a massive accumulation of succinate, acting as an oncometabolite and which levels, assessed on surgically resected tissue are a highly specific biomarker of SDHx-mutated tumors. The aim of this study was to address the feasibility of detecting succinate in vivo by magnetic resonance spectroscopy. Experimental Design: A pulsed proton magnetic resonance spectroscopy (1 H-MRS) sequence was developed, optimized, and applied to image nude mice grafted with Sdhb À/À or wild-type chromaffin cells. The method was then applied to patients with paraganglioma carrying (n ¼ 5) or not (n ¼ 4) an SDHx gene mutation. Following surgery, succinate was measured using gas chromatography/mass spectrometry, and SDH protein expression was assessed by immunohistochemistry in resected tumors. Results: A succinate peak was observed at 2.44 ppm by 1 H-MRS in all Sdhb À/À-derived tumors in mice and in all paragangliomas of patients carrying an SDHx gene mutation, but neither in wild-type mouse tumors nor in patients exempt of SDHx mutation. In one patient, 1 H-MRS results led to the identification of an unsus-pected SDHA gene mutation. In another case, it helped define the pathogenicity of a variant of unknown significance in the SDHB gene. Conclusions: Detection of succinate by 1 H-MRS is a highly specific and sensitive hallmark of SDHx mutations. This non-invasive approach is a simple and robust method allowing in vivo detection of the major biomarker of SDHx-mutated tumors. Clin Cancer Res; 22(5); 1120–9. Ó2015 AACR

    Decidual natural killer cell receptor expression is altered in pregnancies with impaired vascular remodeling and a higher risk of pre-eclampsia.

    Get PDF
    During pregnancy, a specialized type of NK cell accumulates in the lining of the uterus (decidua) and interacts with semiallogeneic fetal trophoblast cells. dNK cells are functionally and phenotypically distinct from PB NK and are implicated in regulation of trophoblast transformation of the uterine spiral arteries, which if inadequately performed, can result in pregnancy disorders. Here, we have used uterine artery Doppler RI in the first trimester of pregnancy as a proxy measure of the extent of transformation of the spiral arteries to identify pregnancies with a high RI, indicative of impaired spiral artery remodeling. We have used flow cytometry to examine dNK cells isolated from these pregnancies compared with those from pregnancies with a normal RI. We report a reduction in the proportion of dNK cells from high RI pregnancies expressing KIR2DL/S1,3,5 and LILRB1, receptors for HLA-C and HLA-G on trophoblast. Decreased LILRB1 expression in the decidua was examined by receptor blocking in trophoblast coculture and altered dNK expression of the cytokines CXCL10 and TNF-α, which regulate trophoblast behavior. These results indicate that dNK cells from high RI pregnancies may display altered interactions with trophoblast via decreased expression of HLA-binding cell-surface receptors, impacting on successful transformation of the uterus for pregnancy

    The Warburg Effect Is Genetically Determined in Inherited Pheochromocytomas

    Get PDF
    The Warburg effect describes how cancer cells down-regulate their aerobic respiration and preferentially use glycolysis to generate energy. To evaluate the link between hypoxia and Warburg effect, we studied mitochondrial electron transport, angiogenesis and glycolysis in pheochromocytomas induced by germ-line mutations in VHL, RET, NF1 and SDH genes. SDH and VHL gene mutations have been shown to lead to the activation of hypoxic response, even in normoxic conditions, a process now referred to as pseudohypoxia. We observed a decrease in electron transport protein expression and activity, associated with increased angiogenesis in SDH- and VHL-related, pseudohypoxic tumors, while stimulation of glycolysis was solely observed in VHL tumors. Moreover, microarray analyses revealed that expression of genes involved in these metabolic pathways is an efficient tool for classification of pheochromocytomas in accordance with the predisposition gene mutated. Our data suggest an unexpected association between pseudohypoxia and loss of p53, which leads to a distinct Warburg effect in VHL-related pheochromocytomas

    Loss of succinate dehydrogenase activity results in dependency on pyruvate carboxylation for cellular anabolism

    Get PDF
    The tricarboxylic acid (TCA) cycle is a central metabolic pathway responsible for supplying reducing potential for oxidative phosphorylation and anabolic substrates for cell growth, repair and proliferation. As such it thought to be essential for cell proliferation and tissue homeostasis. However, since the initial report of an inactivating mutation in the TCA cycle enzyme complex, succinate dehydrogenase (SDH) in paraganglioma (PGL), it has become clear that some cells and tissues are not only able to survive with a truncated TCA cycle, but that they are also able of supporting proliferative phenotype observed in tumours. Here, we show that loss of SDH activity leads to changes in the metabolism of non-essential amino acids. In particular, we demonstrate that pyruvate carboxylase is essential to re-supply the depleted pool of aspartate in SDH-deficient cells. Our results demonstrate that the loss of SDH reduces the metabolic plasticity of cells, suggesting vulnerabilities that can be targeted therapeutically

    Integrative genomic analysis reveals somatic mutations in pheochromocytoma and

    Get PDF
    Pheochromocytomas and paragangliomas are neuroendocrine tumors that occur in the context of inherited cancer syndromes in ∼30% of cases and are linked to germline mutations in the VHL, RET, NF1, SDHA, SDHB, SDHC, SDHD, SDHAF2 and TMEM127 genes. Although genome-wide expression studies have revealed some of the mechanisms likely to be involved in pheochromocytoma/paraganglioma tumorigenesis, the complete molecular distinction of all subtypes of hereditary tumors has not been solved and the genetic events involved in the generation of sporadic tumors are unknown. With these purposes in mind, we investigated 202 pheochromocytomas/paragangliomas, including 75 hereditary tumors, using expression profiling, BAC array comparative genomic hybridization and somatic mutation screening. Gene expression signatures defined the hereditary tumors according to their genotype and notably, led to a complete subseparation between SDHx-and VHL-related tumors. In tumor tissues, the systematic characterization of somatic genetic events associated with germline mutations in tumor suppressor genes revealed loss of heterozygosity (LOH) in a majority of cases, but also detected point mutations and copy-neutral LOH. Finally, guided by transcriptome classifications and LOH profiles, somatic mutations in VHL or RET genes were identified in 14% of sporadic pheochromocytomas/paragangliomas. Overall, we found a germline or somatic genetic alteration in 45.5% (92/202) of the tumors in this large series of pheochromocytomas/paragangliomas. Regarding mutated genes, specific molecular pathways involved in tumorigenesis mechanisms are identified. Altogether, these new findings suggest that somatic mutation analysis is likely to yield important clues for personalizing molecular targeted therapies

    International initiative for a curated SDHB variant database improving the diagnosis of hereditary paraganglioma and pheochromocytoma

    Get PDF
    Funder: Cancer Research UK Cambridge Cancer CentreBackground: SDHB is one of the major genes predisposing to paraganglioma/pheochromocytoma (PPGL). Identifying pathogenic SDHB variants in patients with PPGL is essential to the management of patients and relatives due to the increased risk of recurrences, metastases and the emergence of non-PPGL tumours. In this context, the ‘NGS and PPGL (NGSnPPGL) Study Group’ initiated an international effort to collect, annotate and classify SDHB variants and to provide an accurate, expert-curated and freely available SDHB variant database. Methods: A total of 223 distinct SDHB variants from 737 patients were collected worldwide. Using multiple criteria, each variant was first classified according to a 5-tier grouping based on American College of Medical Genetics and NGSnPPGL standardised recommendations and was then manually reviewed by a panel of experts in the field. Results: This multistep process resulted in 23 benign/likely benign, 149 pathogenic/likely pathogenic variants and 51 variants of unknown significance (VUS). Expert curation reduced by half the number of variants initially classified as VUS. Variant classifications are publicly accessible via the Leiden Open Variation Database system (https://databases.lovd.nl/shared/genes/SDHB). Conclusion: This international initiative by a panel of experts allowed us to establish a consensus classification for 223 SDHB variants that should be used as a routine tool by geneticists in charge of PPGL laboratory diagnosis. This accurate classification of SDHB genetic variants will help to clarify the diagnosis of hereditary PPGL and to improve the clinical care of patients and relatives with PPGL
    corecore