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Statement of translational relevance  

A large proportion of patients with paraganglioma/pheochromocytoma (PPGL) carry a germline 

mutation in an SDHx gene. Identification of SDHx mutations is important for the diagnostic 

work-up, the management, and the follow-up of patients with PPGL and their families, which 

are at risk of developing multiple PGL. Moreover, SDHB gene mutations predispose to 

malignant, particularly aggressive forms of the disease. Therefore, a genetic counseling is now 

recommended for all patients suffering from PPGL. We here show that in vivo detection of 

succinate by proton magnetic resonance spectroscopy is a highly specific and sensitive hallmark 

of SDHx mutated tumors. This noninvasive approach will allow identifying and classifying SDHx 

mutations or variants of unknown significance. It may help for the characterization of 

inoperable tumors and suspicious lesions, and serve as a surrogate biomarker in the assessment 

of tumor response to specific treatments. 
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Abstract 

Purpose 

Germline mutations in genes encoding mitochondrial succinate dehydrogenase (SDH) are found 

in patients with paragangliomas, pheochromocytomas, gastrointestinal stromal tumors, and 

renal cancers.  SDH inactivation leads to a massive accumulation of succinate, acting as an 

oncometabolite and which levels, assessed on surgically resected tissue are a highly specific 

biomarker of SDHx-mutated tumors. The aim of this study was to address the feasibility of 

detecting succinate in vivo by magnetic resonance spectroscopy.  

Experimental design 

A pulse proton magnetic resonance spectroscopy (1H-MRS) sequence was developed, optimized 

and applied to image nude mice grafted with Sdhb-/- or wild-type chromaffin cells. The method 

was then applied to paraganglioma patients carrying (n=5) or not (n=4) an SDHx gene mutation. 

Following surgery, succinate was measured using gas chromatography-mass spectrometry and 

SDH protein expression was assessed by immunohistochemistry in resected tumors. 

Results 

A succinate peak was observed at 2.44 ppm by 1H-MRS in all Sdhb-/--derived tumors in mice and 

in all paragangliomas of patients carrying an SDHx gene mutation, but neither in wild-type 

mouse tumors nor in patients exempt of SDHx mutation. In one patient, 1H-MRS results led to 

the identification of an unsuspected SDHA gene mutation. In another case, it helped defining 

the pathogenicity of a variant of unknown significance in the SDHB gene.  
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Conclusions 

Detection of succinate by 1H-MRS is a highly specific and sensitive hallmark of SDHx mutations. 

This noninvasive approach is a simple and robust method allowing in vivo detection of the 

major biomarker of SDH-mutated tumors. 
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Introduction 

Pheochromocytoma (PCC) and paraganglioma (PGL) are rare neuroendocrine tumors that arise 

in chromaffin cells of the adrenal medulla and in sympathetic and parasympathetic ganglia, 

respectively. The prevalence of pheochromocytoma and paraganglioma (PPGL) in patients with 

hypertension consulting at general outpatient clinics is estimated at 0.2 - 0.6 %, but this number 

may be underestimated (1). Nearly 40 % of patients with PPGL carry a germline mutation in one 

of the 13 PPGL predisposing genes identified so far (2) and mutations of SDHx genes (SDHA, 

SDHB, SDHC, SDHD, SDHAF2) are causative of approximately half of the genetically determined 

cases. SDHx mutations predispose to the hereditary PPGL syndrome but may also be found in 

patients with gastrointestinal stromal tumors (GIST) (3) or renal clear cell carcinomas (4). 

SDHA, B, C, and D genes encode the four subunits of succinate dehydrogenase (SDH), a 

mitochondrial enzyme of the tricarboxylic acid (TCA) cycle that oxidizes succinate into 

fumarate. They were the first genes encoding a mitochondrial enzyme demonstrated to act as 

tumor suppressor genes (5), an important finding supporting the hypothesis of a direct link 

between mitochondrial dysfunction and cancer proposed by Otto Warburg in 1924 (6). Since 

then, mutations in genes encoding for the TCA enzymes fumarate hydratase (FH) (7), isocitrate 

dehydrogenase (IDH1 and 2) (8) and more recently malate dehydrogenase (MDH2), were 

reported to predispose to PPGL, renal cancers, leimyomas, or to be causative of sporadic 

gliomas (for review, (9)). 

Identification of SDHx mutations is important for the diagnostic work-up, the management, and 

the follow-up of index cases and their families. SDHx-mutation carriers are at risk of developing 
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multiple PGL that can arise all along the embryonic migration way of neural crest cells, from the 

base of the skull to the pelvis (10). Moreover, the identification of SDHB gene mutations is of 

specific clinical importance as they predispose to malignant, particularly aggressive forms of the 

disease (11, 12), and a genetic counseling is now recommended for all patients suffering from 

PPGL (1). In familial PPGL patients carrying a germline heterozygous mutation on an SDHx gene, 

the somatic loss of the remaining allele induces a complete SDH loss-of-function, which results 

in the accumulation of succinate.  Succinate acts as an oncometabolite and is suspected to 

mediate most, if not all of the tumorigenic effects related to SDHx mutations (9, 13, 14). 

Development of specific tumor biomarkers allowing the rapid identification of these patients 

would be highly beneficial, and particularly helpful for the characterization of inoperable 

tumors and suspicious lesions. Biomarkers could serve as surrogate markers in the assessment 

of tumor response to specific treatments. Until now, no in vivo method to assess the functional 

consequences of SDHx mutations was available, and all existing tests were performed on 

surgical resected specimens (15-22). 

Succinate concentrations in the millimolar range - 4 to 500 micromoles per gram depending on 

studies and procedures - have been reported in SDHx-mutated PPGL tumors, an increase of up 

to 100-fold compared to non-SDHx-mutated PPGL tumors (19, 21, 23). We hypothesized that 

these succinate levels could be detected noninvasively by in vivo proton magnetic resonance 

spectroscopy (1H-MRS) in SDHx-mutated tumors, without the need for tissue sampling, similarly 

to 2-hydroxyglutarate in patients with IDH1/2-mutated gliomas (24-26). Here, we report a new 

method for SUCCinate Estimation by Spectroscopy (SUCCES) in patients with PPGL related or 

not to an SDHx mutation. 
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Materials and Methods 

 

Optimization of SUCCES for succinate detection with 1H-MRS 

We first tested the SUCCES sequence at 4.7 Tesla on a 3cm-diameter spherical phantom tube 

containing 100 mM sodium succinate dibasic hexahydrate, 100 mM L-lactate and animal fat. 

Spectra and signal intensities acquired with different echo times (TE) ranging from 12.8 to 792 

ms are shown in Fig. S1A and S1B. The gradual decrease of the lipid signal with increasing TE 

eventually unmasked the succinate peak at TE > 70 ms and the lactate peak at TE > 100 ms. As 

previously described (27), increasing TE reduced the succinate signal exponentially and the 

lactate peak sinusoidally due to scalar coupling effect (Fig. S1B). In order to study both the 

succinate and lactate signals, we chose a TE of 272 ms that reduced fat contamination and 

yielded positive lactate and succinate peaks. We then performed 1H-MRS spectra with 

decreasing [10-1 mM] concentrations of succinate and lactate (TR: 3000 ms, TE: 272 ms, 

Average: 128, VOI size 5×5×5 mm). Water suppression was performed using VAPOR pulses (sinc 

RF pulses, 646 ms total duration, 700 Hz bandwidth), followed by crusher gradients (3 ms 

duration, 58 mT/m strength). 3-sinc-shaped RF pulses with 4 kHz bandwidth to obtain a spectral 

width of 20 ppm achieved VOI selection. Spectral resolution was 0.98 Hz/point. After zero filling 

and phase correction, data filtration was performed with a Gaussian function at the top of the 

Free Induction Decay, with a length band of 2 Hz and visualization was obtained with a Fourier 

transform. The area under the succinate peak measured from the spectra was linearly 

correlated with the succinate concentration (Fig. S1C and S1D).  
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A similar procedure was performed in the 3T clinical scanner using 3 cm-diameter phantom 

tubes and a larger VOI size (10 x 10 x 10 mm), except that the TE was lowered to 144 ms to 

compensate the lower detection threshold and the decrease of the signal-to-noise ratio (Fig. 

S1E). Based on these procedures, the threshold for succinate detection was found to be 

approximately 1mM in both magnets.  

 

Generation of the allografted mouse model  

No animal model of SDH-related PPGL being available, we generated an allografted mouse 

model by subcutaneous injection of 2.5×106 immortalized mouse chromaffin cells (imCC) (13) 

carrying a homozygous knockout of the Sdhb gene (Sdhb-/-, clone 8) or their wild type (WT) 

counterparts (Sdhblox/lox) into the flanks of 10-weeks old female NMRI-nu mice.  Animal 

experiments were registered by the French Ethical committee under Number 14-041 and 

followed the ARRIVE guidelines of the National Centre for the Replacement, Refinement, and 

Reduction of Animals in Research (London, UK). 

Tumors were allowed to grow until their size reached 0,6 cm3. They were then resected and 8 

mm3 fragments were grafted in the dorsal fat pad of naive nude mice. The tumors grew in 100% 

of mice and tumors were macroscopically visible after 2 weeks for WT and 1 month for Sdhb-/- 

tumors, in line with the reduced growth rate of Sdhb-/- cells observed in vitro (13). Immediately 

after magnetic resonance spectroscopy, tumors were retrieved and snap frozen in liquid 

nitrogen or fixed in 4% paraformaldehyde.  
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Succinate 1H-MRS in a 4.7 Tesla animal-dedicated MRI device  

Imaging was performed 37±11 days after the graft for the Sdhb-/- group versus 22±7 days for 

the WT group. Mice were placed in prone position under isoflurane anesthesia (4% for 

induction and 1.5% for maintenance in 1L/min air) with respiration monitoring. 

1H-MRS was performed in a dedicated small-animal 4.7 Tesla (T) MR system (Biospec 47/40 USR 

Bruker), using a 1H quadrature transmit/receive body coil with a 3.5 cm inner diameter. An 

anatomical two-dimensional (2D) steady state free precession sequence (True FISP) was first 

acquired in two orthogonal planes. 1H-MRS was then carried out using an optimized 

asymmetric Point REsolved SpectroScopy (PRESS) monovoxel acquisition (Fig. S1). Echo signals 

[Repetition Time (TR) = 3000 ms, Echo Time (TE) = 144 or 272 ms, Average = 512, with a volume 

of interest (VOI) size of 5×5×5 mm3] were acquired during 25 min.  

The MRS spectrum of succinic acid (HOOC-(CH2)2-COOH) presents a characteristic peak at 2.44 

ppm, corresponding to the precession frequency of the CH2 protons. The succinate peak was 

quantified by measuring the area under the peak using Topspin™ 2.0 software (Brüker 

corporation). 

 

Patients 

Patients were recruited from the French COMETE (‘Cortico et Médullosurrénale: les Tumeurs 

Endocrines’)-cohort of the Hypertension unit of the European Georges Pompidou Hospital 

(HEGP), Paris, France. Ethical approval for the study was obtained from the institutional review 

board [Comité de Protection des Personnes (CPP) Ile de France II] and written informed consent 
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to participate in the study was obtained from all patients. The procedures used for PPGL 

diagnosis and genetic testing were in accordance with international clinical practice guidelines 

(1). Mutation analysis of PPGL susceptibility genes was performed as previously described (28). 

When patients underwent surgery for PGL, fresh tumor samples were frozen immediately after 

surgical removal and stored in liquid nitrogen until processing following the COMETE collection 

procedures. Confirmation of diagnosis was performed by histology on paraffin-embedded 

formalin fixed samples. 

 

Succinate detection by 1H-MRS in patients at 3 Tesla  

Combined MR images and MR spectroscopic scans of patients were acquired in a 3T MRI clinical 

scanner (Discovery MR750w GEMSOW, GE Medical Systems, Milwaukee, WI). 1H-MRS spectra 

were acquired by PRESS based on the PROBE monovoxel sequence(29) and optimized for 

succinate and lactate detection, with TR: 2500 ms; TE: 144 ms; Nex: 512 (22 min acquisition) or 

1024 (44 min acquisition). The Volume of Interest (VOI; 1.3 to 19 cm3) was centered on the 

anatomical image to prevent lipid contamination from the tissue surrounding the tumor as 

previously described. (30) 

 

MR images were acquired using a whole body (GEM Chest/Body/Pelvis;Body 24 AA3) or a head 

and neck (GEM Head/Neck/Chest; Head 24) phased-array multi-coil.  

Detection of tumors and VOI positioning was performed on thin-section high-resolution T2-

weighted fast spin-echo imaging in at least two orthogonal planes with the following 
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parameters: TR: 2500 ms; TE: 85 ms; echo train length: 19; slice thickness: 3 mm; spacing: 0.3; 

field of view: 14x14cm for neck or 42x42 cm for whole body coil; matrix: 320×320. 

If necessary, an anatomical two-dimensional (2D) steady state free precession sequence 

(FIESTA CINE) was acquired with TR: 3.7 ms/TE: 1.4 ms; TI: 210ms; slice thickness: 5 mm; 

spacing: 1 mm; field of view: 14x14 cm for neck or 42x42 cm for whole body coil and/or a 3-

dimensional angio-MR at arterial phase, after contrast agent administration of gadoterate 

meglumine 0.2 mL/kg with TR: 11.4 ms; TE: 2.2 ms; slice thickness: 0.8 mm; spacing: 0.4 mm; 

field of view: 30x27 cm.  

A prescan algorithm was first acquired to adapt the transmitter and receiver gains and center 

frequency, the homogeneity of the magnetic field was optimized with the three-plane auto-

shim procedure, and water suppression and automatic shimming of the single voxel were 

performed.  

 

Measurement of succinate by gas chromatography-mass spectrometry. 

Tumor samples from 15 mice (ten samples with Sdhb knockout and five WT controls) and from 

paragangliomas of four patients (patients #1, #5, #6 and #9) were processed by organic 

extraction with ethylacetate, derivatization with N,O-bis(trimethylsilyl) trifluoroacetamide with 

1% trimethylchlorosilane, and analysed by gas chromatography-tandem mass spectrometry 

(GC-MS) on a GC-MS triple quadrupole (Scion TQ, Brüker Daltonics). Analytes were identified 

according to retention time and mass spectrum in selected reaction monitoring mode based on 

standard spectral reference libraries.   
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Immunohistochemistry 

SDHA, SDHB, and SDHD protein expression were assessed on formalin-fixed paraffin embedded 

(FFPE) tumor samples by immunohistochemistry as previously described (16, 18, 22) using the 

following antibodies: anti-SDHA (ab14715, Abcam; 1:1000), anti-SDHB (HPA002868, Sigma-

Aldrich Corp; 1:500) and anti-SDHD (HPA045727, Sigma-Aldrich Corp; 1:50). 

 

SDH activity 

SDH activity was investigated on frozen tumor samples using a spectrophotometrical assay, as 

previously described (31). 
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Results  

In vivo detection of succinate in murine allografted tumors 

The 1H-MRS sequence was optimized in vitro (Fig. S1). In order to investigate whether in vivo 

detection of succinate could be assessed for the non-invasive identification of SDH-related 

tumors, a proof-of-concept pilot study was performed in a mouse model prior to patients’ 

exploration. No animal model of SDH-related PPGL being available, we generated an allografted 

mouse model using immortalized mouse chromaffin cells (imCC) carrying a homozygous 

knockout of the Sdhb gene or their wild type (WT) counterparts (13). Sdhb knockout in tumors 

was confirmed by genotyping (Fig. 1A) and measurement of SDH enzymatic activity (Fig. 1B). 

Gas chromatography-tandem mass spectrometry (GC-MS) showed a massive accumulation of 

succinate in SDH-deficient tumors: 28.3 ± 9.5 nmol per mg protein in the Sdhb-/- group, versus 

0.6 ± 0.7 nmol per mg protein in the control groups (Fig. 1C), confirming inhibition of SDH 

activity in Sdhb-/- tumors. 1H-MRS was first tested in mice using a TE=272 ms and a fixed VOI size 

(125 mm3) placed over the tumor mass of 13 Sdhb-/- and 16 WT allografted mice (Fig. 1D). The 

peak corresponding to lactate, indicative of anaerobic glycolysis was always present regardless 

of the tumor type. In contrast, the succinate peak was only detected in Sdhb-/- tumors, with a 

sensitivity and specificity of 100% (n= 13), in agreement with succinate accumulation caused by 

SDH inhibition (Fig. 1D and Fig. S2A). Measurements of succinate concentrations in Sdhb-/- 

tumor samples (n= 4) by GC-MS confirmed the MRS results. The succinate levels measured in 

vitro correlated with the area under the succinate peaks using an echo time (TE) of 272 ms 

(r2=0.88; Fig. 1E). The results obtained in the 4.7 T magnet with TE=272 ms were repeated with 

TE=144 ms in 5 Sdhb-/- and 3 WT tumors, (Fig. 1F and Fig. S2B). At TE=144 ms, lactate was hardly 
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detectable while succinate was specifically observed in Sdhb-/- tumors. Again, GC-MS 

quantification of succinate performed in Sdhb-/- resected samples (n= 5) correlated with in vivo 

measures (r2=0.70; Fig. 1G). 

 

In vivo detection of succinate in patients 

Nine patients presenting with PCC, cervical, and/or abdominal PGLs were recruited at the 

Hypertension unit of the European Georges Pompidou Hospital (Table 1). All patients benefited 

from genetic counseling in accordance with the Endocrine Society clinical practice guidelines 

(1). Before undergoing SUCCES with 1H-MRS, a germline SDHx gene mutation was identified in 

four patients (one SDHB, one SDHC, and two SDHD), while no mutation was identified for the 

other five patients.  

Genetic testing identified a variant of unknown significance (VUS) in the SDHB gene of Patient 

#1 (c.740T>G=p.Met247Arg), a 33-year-old male with two PGLs and a predominant 

noradrenergic secretion profile. In the cervical PGL of this patient, the 1H-MRS signal of 

succinate was unequivocally discernable at 2.44 ppm using 1024 averages and a 4.6 cm3 VOI 

size (Fig. 2A). Sensitivity and specificity were explored by reducing the scan repeats from 1024 

to 512 averages and the VOI size from 4.6 to 1.5 cm3: the succinate peak was still clearly 

detected in low sensitivity conditions in the cervical PGL (Fig. 2A), as well as in the abdominal 

tumor mass (Fig. 2B), but not in the liver, showing the persistence of SDH activity in this healthy 

organ, expected to be heterozygous for the mutation (Fig. 2C). The pathogenicity of this newly-

described variant suggested by 1H-MRS was supported by the loss of heterozygozity (LOH) at 
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the SDHB locus in DNA extracted from the resected abdominal PGL (Fig. 2D) and confirmed by 

three functional tests: SDHB-negative (unspecific weak diffuse signal) and SDHD-positive 

immunohistochemistries (Fig. 2E), loss of SDH enzymatic activity (Fig. 2F), and succinate 

accumulation measured by GC-MS (Fig. 2G). 

The succinate peak was observed in the tumors of the three other SDHx patients using scan 

repeats of 1024 and 512 averages (Fig. S3). Interestingly, a choline peak at 3.2 ppm was 

associated with the succinate peak in each of the SDHx-mutated tumors.  In contrast, neither 

succinate nor choline peaks were observed in tumors from patients without SDHx mutations 

(Fig. 3 and Fig. S4).  In Patient #5, immunohistochemistry of tumor samples showed SDHB and 

SDHA-positive, and SDHD-negative staining, while GC-MS analysis confirmed the absence of 

succinate accumulation (Fig. 3B and C).  

 

Unexpected SDHA mutation identified by SUCCES 

Surprisingly, a small but significant peak above baseline was detected in an abdominal PGL from 

a patient with an apparently sporadic form of the disease (Fig. 4A.) This patient was a 48-year-

old man suffering from a single abdominal PGL with no family history of PPGL. Following 

comprehensive genetic counseling according to the international guidelines, the search for 

mutations of SDHB, SDHC, and SDHD genes returned negative. Nevertheless, the presence of a 

succinate peak in the tumor of this patient prompted us to sequence the SDHA gene of this 

patient, which identified a c.91C>T=p.Arg31Ter mutation (Fig. 4B), previously reported in Dutch 

patients with PPGL(16) or GIST (32).  After the patient had undergone surgery, additional 
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analyses of his tumor showed negative SDHA and SDHB, and positive SDHD 

immunohistochemistry (Fig. 4C). GC-MS confirmed the accumulation of succinate (Table 1), and 

validated the rare and unexpected SDHA-mutated status of this patient that had been initially 

stratified as a sporadic case. 
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Discussion  

Here, we report the non-invasive detection of succinate by in vivo Magnetic Resonance 

Spectroscopy in tumors of PPGL patients carrying SDHx genes mutations, but not in those of 

patients without SDHx mutations. Interestingly, in an Sdhb-/- mouse tumor model this 

succinate peak is correlated with the concentrations of succinate measured in the resected 

tumors by GC-MS. 

Demonstration of SDH inactivation is currently based on in vitro analyses of tissue samples: 

immunohistochemical analyses of SDHB, SDHA, and SDHD expression in FFPE tissues (16, 18, 

22), direct succinate measurements on frozen tumor samples by nuclear magnetic resonance 

(NMR) spectroscopy (15, 19, 20, 23), GC-MS, or liquid chromatography mass spectroscopy (LC-

MS) (13, 17, 21). Recently, Varoquaux et al reported in vivo detection of succinate using 1H-MRS 

in 6 patients with head and neck PGL (3 SDHD, 1 SDHB and 2 sporadic cases). Although the 

spectra quality was considered as low in the 2 sporadic cases, and uninterpretable in one SDHD-

mutated tumor, a succinate peak was also only detected in three SDHx-mutated tumors (33). In 

the present study, we show that 1H-MRS also detects succinate in abdominal PGL and in genes 

encoding all four SDH subunits. Moreover, we performed longer acquisition time (512 and 1024 

averages, versus 120 in the Varoquaux et al study), which allowed an immediate interpretation 

of spectra, without the need of post-processing the data. 

The benefits of assessing this tumor hallmark in patients with SDHx-related tumors are 

important in several aspects. SUCCES would allow stratifying these patients or classifying VUS 

as deleterious mutations with no need of tissue sampling. Patient #9 carried a single abdominal 

PGL diagnosed at age 48, without a family history for this disease. According to international 
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guidelines, SDHB, SDHC, and SDHD genetic testing were performed in this patient, but not 

SDHA, which would have been prescribed only after surgery, in case of SDHA negative IHC (1). 

In such a case, exploring the patient with 1H-MRS and detecting the succinate peak orientated 

us without hesitation towards SDHA sequencing, leading to early identification of the mutation. 

SDHA immunohistochemistry is not is not included in international guidelines and is not a 

standard procedure, thus it is likely that this mutation would have been missed in most 

instances.  In Patient #1, an SDHB gene VUS was identified, while SDHB IHC showed a 

potentially misleading, weak diffuse signal, previously reported in some PPGL with SDHx genes 

mutations (18). Hence, in this other case, the 1H-MRS succinate peak was particularly 

informative to validate the functionality of the SDHB mutation.  

SDHx-mutation carriers are at risk of developing multiple PGLs, and SDHB-mutated 

carriers are predisposed to metastatic forms of the disease. Knowledge of the SDHx-mutated 

status is critical for the follow-up and clinical management of these patients and of their 

relatives. Based on an early knowledge of the SDHx mutational status, surgeons may decide to 

adapt their procedures, especially for SDHB cases. For non-operable tumors, therapeutic 

choices may also take advantage from this information. For example, studies have suggested 

that SDHB-mutation carriers may be better responders to high doses of 131I-MIBG (34), sunitinib 

(35) or temozolomide treatments (36). Although these results will need to be evaluated in 

larger, prospective and comparative studies, they nevertheless pave the way towards 

personalized medicine for inherited PPGL. 

Overall, the clinical value of SUCCES lies in its capacity to assess for the presence of succinate 

repeatedly over the time course of the disease, for clinical surveillance, post-operative follow-
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up, and evaluation of treatment efficacy (17). In vivo estimation of succinate could help 

classifying a dubious lesion detected during surveillance and to demonstrate the causality of 

SDH deficiency in tumors identified in SDHx-mutated patients. This would be particularly helpful 

in cases for which surgery is not necessary, such as prolactin-secreting pituitary adenomas 

recently described in SDHx mutation carriers (37). Because of the small size of these tumors, 

the feasibility of SUCCESS may however be more difficult in these cases.   

Animal experiments demonstrated that the area under the succinate peak of the 1H-MRS 

spectra is correlated with the concentrations of succinate measured in the resected tumors by 

GC-MS. Future studies in larger groups will be needed to show if this correlation holds also in 

patients. If this turned out to be the case and given that succinate concentrations in tumors 

reflect the metabolic activity of SDH-deficient tumor cells, then SUCCES would produce a 

quantifiable surrogate marker of radiation and/or chemotherapy efficacy for the patients. 

Interestingly, other metabolites have been shown in vitro to discriminate between different 

types of inherited PPGL (20). In future studies, it may also be addressed whether these 

metabolites can also be observed 1H-MRS and used as supplemental tools.  For example, 

Imperiale et al recently reported in a case of sporadic pheochromocytoma that catecholamines 

are indeed detectable by 1H-MRS (38). 

The present proof-of-concept study has shown that SUCCES is highly sensitive, reliable, and 

specific for the detection of the SDHx mutations that lead to inhibition of SDH activity. The next 

step in order to fully define the place of this new method in the clinical management of PPGL is 

to test the method in larger series of patients and define the best conditions for routine clinical 

applications.  In that respect, we occasionally observed, in both groups of patients, a blunt 
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signal centered at 1.2 ppm. This signal corresponds to adipose tissue surrounding the tumor 

that is not always straightforward to avoid even with strict intra-tumor positioning of the VOI in 

which 1H-MRS is performed. Since MRS data are usually displayed with a y scale normalized on 

the highest peak of the spectrum, the presence of a significant lipid signal may modify the 

threshold for succinate detection in small lesions. Averaging more spectra increases the signal-

to-noise ratio but also increases scan duration, which may not be applicable to all patients. For 

abdominal tumors, respiratory gating should be considered to reduce the lipid peak and 

improve the quality of spectra, as previously reported for in vivo catecholamine detection (38).  

Using 512 scan averages appears to be sufficient for reliable succinate detection in tumors with 

SDHx genes mutation. However, this may limit the quality of spectra for small or highly necrotic 

tumors, as shown in the case of patient #3 (Fig. S3B), for whom successful interpretation could 

only be achieved after 1024 scan averages. Therefore the minimal tumor size for reliable 

measurements of succinate needs to be addressed in future prospective studies. Fortunately, 

this 1H-MRS sequence is easy to implement in any clinical MRI scanner using standard hardware 

and software already in place in many imaging departments.  

Finally, it is noteworthy that the succinate peak was always associated in human PPGL with a 

peak resonating at 3.2 ppm on the 1H-MRS spectra, most probably corresponding to choline. 

Such a peak was only seen in tumors from the patients carrying SDHx mutations. Previous in 

vitro NMR studies never reported such a choline increase in SDH-related tumors. However, a 

similar peak is also observed in the spectra of both SDH-mutated PGL evaluated by in vivo 1H-

MRS in the Varoquaux et al study (33). The accuracy of this observation will need to be further 

validated both in vivo and in vitro, in SDH as well as in other oncogenic mutations of metabolic 
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pathways. It is worth noting that choline is a methyl donor in the S-adenosylmethionine 

pathway involved in DNA and histone methylation. Hence, if confirmed, the choline peak that 

we observed here may be related to the disrupted methylation phenotype recently identified in 

SDH-deficient tumors (13).  

In conclusion, we present here a robust and simple method that can be used routinely to 

demonstrate the presence of succinate in the tumors of PPGL patients. Considering its excellent 

sensitivity, specificity, and innocuousness, SUCCES deserves to be tested in large multicentric 

series in order to define its place in the clinical guidelines of PPGL management as well as in 

other SDH-related tumors such as GIST and renal clear cell carcinomas.    
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Table 1: Characteristics of the 9 patients and 10 tumors analyzed by 1H-MRS at 3 Tesla 

 

Patient Gender Age Gene   Mutation type  
Multiple 

locations 

Type of 

tumor 

analyzed 

Largest 

tumor 

diameter 

(mm) 

VOI size 

(cm3) 

Succinate 

level on GC-

MS  

(nmol/mg 

protein) 

1 M 33 SDHB 
c.740T>G 

p.Met247Arg 
Yes 

VPGL 80 4.6 α 1.5 ND 

APGL 94 19.2 89.3 

2 M 70 SDHC 
c.397C>T 

p.Arg133Ter 
No VPGL 42 3.7 

ND 

3 F 32 SDHD 
c.210G>T 

p.Arg70Ser  
Yes CBPGL 24 1.5 ND 

4 M 41 SDHD 
c.325C>T 

p.Gln109Ter 
Yes CBPGL 39 3.6 ND 

5 M 25 none NA No PCC 55 6.2 0.84 

6 M 60 none NA No APGL 35 4.2 0.54 

7 F 74 none NA Yes CBPGL 30 1.3 ND 

8 M 47 none NA No PCC 30 5.8 ND 

9 M 48 SDHA 
c.91C>T  

p.Arg31Ter 
No APGL 50 12 72.17 

1-H-MRS: proton magnetic resonance spectroscopy; PCC: pheochromocytoma, APGL: 

abdominal paraganglioma ; CBPGL: carotid body paraganglioma; VPGL: carotid body 

paraganglioma;  VOI: Volume of Interest; NA: non applicable; ND: Not determined. 
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Figure Legends 

 

Fig. 1. SUCCES in Sdhb-/- allografted tumors in mice. (A) Genotyping of Sdhb gene locus in DNA 

extracted from tumors derived from Sdhb-/- and WT (Sdhblox/lox) cells allografted in mice. The 

deletion of exon 2 (�ex2, 460 bp) is visible in tumors from Sdhb-/- grafted cells while the floxed 

allele (900 pb) is shown in the Sdhblox/lox grafted mice. In both tumor types, a WT DNA band 

(845 bp) originating from the supporting cells of the allografted mice (fibroblasts, endothelial 

cells) is visible. (B) Sdhb-/- derived tumors display an unequivocal decrease in SDH activity 

measured by spectrophotometry. (C) Massive accumulation of succinate measured by gas 

chromatography-tandem mass spectrometry (GC-MS) in Sdhb-/- derived tumors, which is not 

seen in Sdhblox/lox-derived tumors. (D) 1H-MRS spectra of tumor masses in mice allografted with 

WT (green spectra) or Sdhb-/- (blue spectra) cells using a TE=272 ms. The lactate peak was 

present regardless of the tumor type while the succinate peak was only detected in Sdhb-/- 

tumors. (E) Succinate levels measured in vitro by GC-MS correlate with the area under the 

succinate peaks (AUP) at TE=272 ms. (F) and (G) show the same data as in A and B respectively, 

but at TE= 144 ms.  

 

Fig. 2: SUCCES in a patient with an SDHB gene mutation. (A) 1H-MRS spectra of the right 

cervical PGL of Patient #1. A succinate peak was detected in the cervical PGL with two different 

averages (1024 and 512) and two different VOI sizes (4.6 and 1.5 cm3). (B) Applying the PRESS 

sequence to the abdominal tumor mass of the same patient permits to detect a succinate peak. 

(C) In the healthy liver, the absence of a peak demonstrates the specificity of the method.  (D) 
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Genetic testing identified a variant of unknown significance in the SDHB gene with a loss of 

heterozygozity in tumor DNA extracted from the resected abdominal PGL. (E) SDHB 

immunochemistry (IHC) leads to an unspecific weak diffuse signal in tumor cells while 

endothelial cells (arrows) are strongly labeled (upper part). A positive staining is shown after 

SDHD IHC (lower part). Scale bar = 50 µm. (F) Significant reduction of SDH activity in Patient #1 

(blue line) as compared to (G) Patient #6, a case without SDHx mutation. 

 

Fig. 3: SUCCES in a patient without SDHx gene mutation. (A) Absence of a succinate peak in 

the 1H-MRS spectrum of Patient #5’s PCC with 1024 averages. (B) Unequivocal positive granular 

staining after SDHB and SDHA IHC (left), and negativity of SDHD IHC (right). Scale bar = 50 µm. 

(C) Low level of succinate in the tumor measured by GC-MS.  

 

Fig. 4: SUCCES in a patient with a SDHA gene mutation. (A) 1H-MRS spectra in Patient #9’s 

abdominal PGL. A small succinate peak was detected with 512 averages and a 12 cm3 VOI size. 

(B) Results of genetic testing that identified a c. 91C>T variant in the SDHA gene. (C) SDHA and 

SDHB immunochemistry (IHC) lead to unspecific weak diffuse signals in tumor cells while 

endothelial cells are strongly labeled. In contrast, SDHD IHC shows a positive staining. Scale bars 

= 50 µm.  
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