1,070 research outputs found
Gluing techniques in triangular geometry
ISSN:0033-560
Modern Strategies for Heterocycle Synthesis
none1noopenFavi, GianfrancoFavi, Gianfranc
Marine Alkaloid 2,2-Bis(6-bromo-3-indolyl) Ethylamine and Its Synthetic Derivatives Inhibit Microbial Biofilms Formation and Disaggregate Developed Biofilms
The antimicrobial activity of the marine bisindole alkaloid 2,2-bis(6-bromo-3-indolyl) ethylamine (1) and related synthetic analogues (compounds 2â8) against target microorganisms was investigated by Minimum Inhibitory Concentration (MIC) determination. Compound 1 showed the greatest antimicrobial activity with the lowest MIC (8 mg/L) against Escherichia coli, Staphylococcus aureus, and Klebsiella pneumoniae, while the derivatives exhibited higher MICs values (from 16 to 128 mg/L). Compounds 1, 3, 4, and 8, the most active ones, were then tested against E. coli, S. aureus, K. pneumoniae, and Candida albicans during biofilms formation as well as on 24 h developed biofilms. The natural alkaloid 1 inhibited the biofilm formation of all the tested microorganisms up to 82.2% and disaggregated biofilms of E. coli, S. aureus, K. pneumoniae, and C. albicans after 30 min of contact, as assessed by viable plate count and crystal violet (CV) staining (optical density at 570 nm). Synthetic derivatives 3, 4, and 8 displayed anti-biofilm activity toward individual bacterial populations. This study highlights the potential of marine bisindole alkaloid 1 as anti-biofilm agent and shows, through a preliminary structure activity relationship (SAR), the importance of halogens and ethylamine side chain for the antimicrobial and antibiofilm activities of this bisindole series
Bortezomib-containing multimodality treatment for antibody-mediated rejection with anti-HLA and anti-AT1R antibodies after kidney transplantation
For decades, the human leukocyte antigen (HLA) complex
has been considered the primary target of antibody-mediated
rejection (AMR), and treatment strategies have mainly focused
on anti-HLA antibodies. Recently, other antibodies potentially
causing organ damage and loss have been discovered.
Conclusive evidence on treatment options for these subtypes
of AMR is still lacking. After an experience previously
reported in this journal,1 we describe a case of late-onset AMR,
with mixed anti-HLA and anti-angiotensin II type 1 receptor
(AT1R) antibodies, that was successfully treated with a multimodal
approach, including the use of the proteasome inhibitor
bortezomib
Engineering Bacterial Cellulose Scaffold and its Biomimetic Composites for Bone and Cartilage Tissue Regeneration
A very promising approach to quickly and safely restore normal function to extensively damages and diseases bone and cartilage tissues is the regeneration of these injured tissues using an engineered support scaffold. This dissertation research focuses on the development and evaluation of native bacterial cellulose (BC) and chemically modified BCs as potential biomaterials for bone and cartilage regeneration using equine-derived bone marrow mesenchymal stem cells (EqMSCs).
The ability of native BC scaffold to maintain cell proliferation, viability, and in vitro differentiation of the seeded EqMSCs for application in bone and cartilage tissue engineering was studied. BC morphology was characterized using Scanning Electron Microscopy (SEM). Fluorescence microscopy and MTS assay were used to evaluate cell viability and expansion on the BC scaffolds. EqMSCs differentiation into osteocytes and chondrocytes were assessed using alizarin red and alcian blue differentiation assays, respectively.
Biodegradable, microporous and surface modified BC scaffolds were developed to mimic native bone and cartilage tissues. Microporous BC scaffolds were synthesized using natural wax microspheres. BC scaffolds were chemically modified with periodate oxidation to generate biodegradable BCs. To mimic bone tissue, BCs were mineralized with calcium-deficient hydroxyapatite (CdHAP). Surface amination and carboxylation of BCs were performed to simulate the glycosaminoglycans present in the native cartilage tissue. Native and modified BC scaffolds were characterized using Fourier Transform Infrared Spectroscopy (FTIR), SEM, and mechanical testing. Resulting scaffolds were also characterized for their ability to support and maintain the proliferation, osteogenic and chondrogenic differentiation of EqMSCs using fluorescence microscopy, confocal microscopy, MTS assay, and cell differentiation assays.
Biodegradable, CdHAP tubular-shaped BC composites with oriented nanofibers were developed and evaluated to mimic the hydroxyapatite minerals and inherent oriented collagen fibers in native bone. Tubular-shaped BCs were synthesized under static culture in oxygen-permeable silicone tubes. The scaffolds were characterized using SEM and mechanical testing. The ability of the tubular-shaped BC scaffolds to support and maintain EqMSCs proliferation and osteogenic differentiation were also assessed.
In summary, the material properties and in vitro results acquired from the research demonstrate that native and specifically biodegradable microporous BC scaffolds have the ideal properties for bone and cartilage tissue regeneration therapies
- âŚ