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Abstract

We discuss gluing of objects and gluing of morphisms in triangulated categories. We illustrate
the results by producing, among other things, a Mayer–Vietoris exact sequence involving Picard
groups.

0. Introduction

Tensor triangular geometry is the geometry of tensor triangulated categories. Heuristically, this con-
tains at least algebraic geometry and the geometry of modular representation theory but it also appears
in many other areas of mathematics, as recalled in [1, Introduction].

We will denote by K a triangulated category (with suspension T : K ∼→ K) equipped with a tensor
product, that is, an exact symmetric monoidal structure ⊗ : K × K −→ K; see more in section 1.
Two key examples to keep in mind appear, respectively, in algebraic geometry, as K = Dperf(X),
the derived category of perfect complexes over a quasi-compact and quasi-separated scheme X (for
example, a noetherian scheme), and in modular representation theory, as K = kG − stab, the stable
category of finite dimensional representations modulo projective ones, for G a finite group and k a
field of characteristic p > 0, typically dividing the order of the group.

In [1], the spectrum, Spc(K), of such categories is introduced. It is the universal topological space
in which one can define supports, supp(a) ⊂ Spc(K), for objects a ∈ K in a reasonable way. In
the above two examples, this spectrum is, respectively, isomorphic to the scheme X itself and to the
projective support variety Proj H•(G, k).

One fundamental construction of [1] is the presheaf of triangulated categories, U �→ K(U), which
associates to an open U ⊂ Spc(K) a tensor triangulated category K(U) defined as follows. Consider
Z = Spc(K) � U the closed complement of U and consider the thick subcategory KZ ⊂ K of those
objects a ∈ K with supp(a) ⊂ Z, that is, those objects which ought to disappear on U . Then, the
category

K(U) := K̃/KZ

is defined as the idempotent completion of the Verdier quotient K/KZ . Localization K � K/KZ

followed by idempotent completion K/KZ ↪→ K(U) yields a restriction functor ρU : K → K(U).
In the scheme example, it is an important theorem of Thomason [10] that for a quasi-compact open
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U ⊂ X and for K = Dperf(X), the above K(U) is equivalent to Dperf(U). This is one reason for
working with idempotent complete categories. Another reason is a key result of [2] which says that
if K is idempotent complete and if the support of an object of K decomposes into two connected
components then the object itself decomposes into two direct summands accordingly, see Theorem 1.8
below.

The present paper deals with the following type of questions. Suppose that Spc(K) is covered
by two quasi-compact open subsets Spc(K) = U1 ∪ U2 and consider the commutative diagram of
restriction functors:

K ��

��

K(U1) =: K1

��
K2 := K(U2) �� K(U1 ∩ U2) =: K12.

(1)

QUESTION Is the global category K obtained by ‘gluing’ K1 and K2 over K12?

This is a very natural question but it is known to be tricky, already in algebraic geometry. Indeed,
it is easy to find non-zero morphisms f : a → b in K = Dperf(X) such that f|U1

= 0 and f|U2
= 0 for

an open cover X = U1 ∪ U2. Over X = P1
k an example is the morphism f : O(2) → T (O) which

is the third one in the exact triangle associated to the non-split Koszul exact sequence O � O(1) ⊕
O(1) � O(2); take for U1 and U2 two affine subsets. (For an exact sequence of vector bundles
E′ � E � E′′ over a scheme X, the corresponding morphism f : E′′ → T (E′) is zero in Dperf(X)

if and only if the sequence splits.) This example also shows that the phenomenon is not pathological
but observable in very common situations.

Still, the problem admits the following solution, to be found in our main results:

THEOREM (Mayer–Vietoris for morphisms, see Corollary 5.8) In the above situation (1), given two
objects a, b ∈ K, there exists a long exact sequence:

· · · HomK12(T a, b)
∂→ HomK(a, b) → HomK1(a, b) ⊕ HomK2(a, b) → HomK12(a, b)

∂→ · · ·
The connecting homomorphism ∂ : HomK12(T a, b) → HomK(a, b) is defined in Construction 3.1.
The other homomorphisms are the obvious restrictions and differences thereof.

THEOREM (Gluing of two objects, see Corollary 5.10) In the above situation (1), given two objects
a1 ∈ K1 and a2 ∈ K2 and an isomorphism σ : a1

∼→ a2 in K12, there exists an object a ∈ K which
becomes isomorphic to ai in Ki for i = 1, 2. Moreover, this gluing is unique up to (possibly non-
unique) isomorphism.

We can extend the above result to three open subsets and three objects, at the cost of possibly
losing uniqueness of the gluing:

COROLLARY (Gluing of three objects, see Corollary 5.11) Let Spc(K) = U1 ∪ U2 ∪ U3 be a cover
by quasi-compact open subsets. Consider three objects ai ∈ K(Ui) for i = 1, 2, 3 and three iso-
morphisms σij : aj

∼→ ai in K(Ui ∩ Uj) for 1 ≤ i < j ≤ 3. Suppose that the cocycle relation
σ12 ◦ σ23 = σ13 is satisfied in K(U1 ∩ U2 ∩ U3). Then there exists an object a ∈ K, isomorphic to
ai in K(Ui) for i = 1, 2, 3.
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In general, we do not know if this gluing is possible with more than three open subsets. Nevertheless,
inTheorem 5.13, we give elementary conditions under which the gluing is possible for arbitrary covers.

Of course, there is a gigantic literature on Mayer–Vietoris long exact sequences. We do not doubt
that the reader considers such ideas as basic mathematics and does not expect us to survey former
Mayer–Vietoris results here. Let us simply mention, in the framework of algebraic geometry, that
our results recover Thomason’s Mayer–Vietoris long exact sequences for Dperf(X), see [9], which
themselves already generalized Mayer–Vietoris long exact sequences in Zariski cohomology.

We then apply the above main results to obtain an exact sequence involving Picard groups. For us,
the Picard group, Pic(K), is the set of isomorphism classes of invertible objects in K, with the tensor
product as multiplication. In algebraic geometry, Pic(Dperf(X)) is well known to be the usual Picard
group of X up to possible shifts, see Proposition 6.4. On the other hand, Pic(kG − stab) is nothing
but the group of endotrivial representations, which is one of the fundamental invariants of modular
representation theory. In the next statement, we denote by Gm(K) = HomK(1, 1)× the abelian group
of automorphisms of the ⊗-unit object 1 ∈ K.

THEOREM (Mayer–Vietoris for Picard groups, see Theorem 6.7) Let Spc(K) = U1 ∪ U2 with Ui

quasi-compact. See (1). Then there is half a long exact sequence:

· · · �� HomK(U1∩U2)(T 1, 1)
1+∂

��

1+∂
�� Gm(K) �� Gm(K(U1)) ⊕ Gm(K(U2)) �� Gm(K(U1 ∩ U2))

δ ��

δ �� Pic(K) �� Pic(K(U1)) ⊕ Pic(K(U2)) �� Pic(K(U1 ∩ U2)).

To the left, we have the Mayer–Vietoris long exact sequence, the homomorphism ∂ is as before and
the non-labelled morphisms are again the obvious restrictions and (multiplicative) differences of
restrictions. The new homomorphism

δ : Gm(K(U1 ∩ U2)) → Pic(K)

assigns to a unit σ ∈ Gm(K(U1 ∩ U2)) the invertible object obtained by gluing two copies of the
objects 1 ∈ K(U1) and 1 ∈ K(U2) along σ : 1

∼→ 1 in K(U1 ∩ U2).

It would be very interesting to continue this sequence to the right, say, with Brauer groups of
Azumaya algebras. Although this is still work in progress, the authors do not know yet whether such
an extension is possible in general. Neither do we know what the Brauer group of K = kG − stab
should be, for instance.

In fact, in modular representation theory, applying the above results to K = kG − stab gives us
a way to construct endotrivial kG-modules from any Čech Gm-cocycle over the projective support
variety Proj H•(G, k), as long as the involved cover has at most three open pieces. In particular, the
map δ of the last result might be of interest to representation theorists and we do not know if it has
been studied, even in special cases. Dave Benson and Jon Carlson suggested a possible link with the
recent article [5]. This is investigated in a subsequent paper [3].
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Using the conditional gluing of more than three objects, we obtain the following result
(Theorem 6.8), which relates invertible modules over the spectrum Spc(K) and invertible objects
in K. See more comments in Remark 6.9.

THEOREM Suppose that HomK(U)(T 1, 1) = 0 for every quasi-compact open subsets U ⊂ Spc(K).
Then, gluing induces an injective homomorphism from the first Čech cohomology of Spc(K) with
coefficients in Gm into the Picard group of K

Ȟ
1
(Spc(K), Gm) ↪→ Pic(K).

For completeness, we give in section 7 the following variant of Mayer–Vietoris:

THEOREM (Excision, see Theorem 7.1) Let Y ⊂ U ⊂ Spc(K). Assume that Y is closed with quasi-
compact complement and that U is open and quasi-compact. Then the restriction functor K → K(U)

induces an equivalence between the subcategories of objects supported on Y , that is, KY
∼−→ K(U)Y .

The referee of the first version of this article suggested we give more formal proofs, postponing as
long as possible the assumption that K carries a tensor product. We therefore rewrote the paper with
the ‘formal Mayer–Vietoris’ language of sections 2–4. These sections can be read without reference
to tensor triangular geometry, that is, without assuming K has a tensor structure. Some readers will
benefit from this gain of generality, despite a little loss in geometric intuition. Then, tensor triangular
geometry really enters the game in section 5.

1. Recalling tensor triangular geometry

We survey the main concepts and results of [1] and [2]. Standard notions about triangulated categories
can be found in Verdier [11] or Neeman [8].

DEFINITIONS 1.1 A tensor triangulated category (K, ⊗, 1) is an essentially small triangulated cate-
goryK with a symmetric monoidal structure⊗ : K × K −→ K, (a, b) �→ a ⊗ b.We have in particular
a ⊗ b ∼= b ⊗ a and 1 ⊗ a ∼= a for the unit 1 ∈ K. We assume moreover that the functors a ⊗ − and
− ⊗ b are exact for every a, b ∈ K and that the usual diagram

T (a) ⊗ T (b)
∼= ��

∼=
��

T (T (a) ⊗ b)

∼=
��

T (a ⊗ T (b)) ∼=
�� T 2(a ⊗ b)

anti-commutes. We use T : K ∼→ K to denote the translation (suspension).
A prime ideal P � K is a proper subcategory such that (1)–(4) below hold true:

(1) P is a full triangulated subcategory, that is, 0 ∈ P , T (P) = P and if a, b ∈ P and if a →
b → c → T (a) is a distinguished triangle in K then c ∈ P;
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(2) P is thick, that is, if a ⊕ b ∈ P then a, b ∈ P;
(3) P is a ⊗-ideal, that is, if a ∈ P then a ⊗ b ∈ P for all b ∈ K;
(4) P is prime, that is, if a ⊗ b ∈ P then a ∈ P or b ∈ P .

A subcategory J ⊂ K satisfying (1), (2) and (3) is called a thick ⊗-ideal.
The spectrum Spc(K) is the set of primes P ⊂ K. The support of an object a ∈ K is defined as the

subset supp(a) = {P ∈ Spc(K) | a /∈ P} ⊂ Spc(K). The complements U(a) = {P ∈ Spc(K) | a ∈
P} of these supports form a basis {U(a)}a∈K of the so-called Zariski topology on the spectrum.

THEOREM 1.2 [1, Theorem 3.2] Let K be a tensor triangulated category. We have

(i) supp(0) = ∅ and supp(1) = Spc(K).
(ii) supp(a ⊕ b) = supp(a) ∪ supp(b).

(iii) supp(T a) = supp(a).
(iv) supp(a) ⊂ supp(b) ∪ supp(c) for any distinguished a → b → c → T (a).
(v) supp(a ⊗ b) = supp(a) ∩ supp(b).

Moreover, (Spc(K), supp) is universal for these properties.

NOTATION 1.3 Let Y ⊂ Spc(K). We denote by KY the full subcategory KY := {a ∈ K | supp(a) ⊂ Y }
of those objects supported on Y .

DEFINITION 1.4 We call a tensor triangulated category (K, ⊗, 1) strongly closed if there exists a
bi-exact functor hom : Kop × K −→ K with natural isomorphisms

HomK(a ⊗ b, c) ∼= HomK(a, hom(b, c)) (2)

and such that all objects are strongly dualizable, that is, the natural morphism

D(a) ⊗ b
∼→ hom(a, b) (3)

is an isomorphism for all a, b ∈ K, where we denote by D(a) the dual D(a) := hom(a, 1) of an
object a ∈ K. More details can be found in [7, Appendix A], for instance. It follows from (3) that
D2(a) ∼= a for all a ∈ K; see for instance [7, Theorem A.2.5(b)].

PROPOSITION 1.5 [2, Corollary 2.5] Let K be a strongly closed tensor triangulated category and let
a ∈ K be an object. Then supp(a) = ∅ if and only if a = 0.

PROPOSITION 1.6 [2, Corollary 2.8] Let K be a strongly closed tensor triangulated category. Suppose
that the supports of two objects do not meet: supp(a) ∩ supp(b) = ∅. Then there is no non-trivial
morphism between them: HomK(a, b) = 0.

PROPOSITION 1.7 Let K be a strongly closed tensor triangulated category. A morphism f : a → b in
K is an isomorphism if and only if it is an isomorphism in K/P for all P ∈ Spc(K).

Proof . This easily follows from the fact that a morphism f in a triangulated category is an isomor-
phism if and only if cone(f ) = 0. Thus, if f is an isomorphism in K/P we have that cone(f ) ∈ P .
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If this is true for all P ∈ Spc(K) we have that supp(cone(f )) = ∅ which implies that cone(f ) = 0
by Proposition 1.5.

THEOREM 1.8 [2, Theorem 2.11] Let K be a strongly closed tensor triangulated category. Assume
that K is idempotent complete. Then, if the support of an object a ∈ K can be decomposed
as supp(a) = Y1 ∪ Y2 for disjoint closed subsets Y1, Y2 ⊂ Spc(K), with each open complement
Spc(K) � Yi quasi-compact, then the object itself can be decomposed as a direct sum a � a1 ⊕ a2

with supp(ai) = Yi for i = 1, 2.

REMARK 1.9 Recall that an additive category K is idempotent complete (or pseudo-abelian or
karoubian) if all idempotents of all objects split, that is, if e ∈ HomK(a, a) with e2 = e then
the object a decomposes as a direct sum a � a′ ⊕ a′′ on which e becomes

(
1 0
0 0

)
, that is, a ∼=

Im(e) ⊕ Ker(e). One can always ‘idempotent complete’ an additive category K ↪→ K̃. If K is trian-
gulated, its idempotent completion K̃ inherits a unique triangulation such that K ↪→ K̃ is exact, see
more in [4].

The rest of the paper heavily relies on the next set of definitions:

DEFINITIONS 1.10 Let K be an idempotent complete strongly closed tensor triangulated cate-
gory. Let U be a quasi-compact open subset of Spc(K), and let us denote by Z = Spc(K) �
U its closed complement. We denote by L(U) = K/KZ the Verdier localization with respect
to KZ (which can be realized by keeping the same objects as K and by inverting all mor-
phisms whose cone belongs to KZ , by means of calculus of fractions). We denote by K(U) =
L̃(U) its idempotent completion. We have a fully faithful cofinal morphism L(U) ↪→ K(U).
(Some authors say dense instead of cofinal, like in [9]. This means that every object a of
the big category is a direct summand of an object of the small one, for instance a ⊕ T a.
See [4].)

For U = Spc(K), by Proposition 1.5, we have L(U) = K = K̃ = K(U) since we assume K idem-
potent complete. If U ⊂ V we denote by ρU,V : L(V ) → L(U) the localization functor and we also
denote by

ρU,V : K(V ) → K(U)

the induced functor, that we call the restriction functor from V to U . When V = Spc(K), we simply
write ρU : K → K(U) for ρU,V .

For two objects a, b of K we denote by

HomK(U)(a, b) := HomL(U)

(
ρU(a), ρU(b)

) = HomK(U)

(
ρU(a), ρU(b)

)

the set of morphisms between ρU(a) and ρU(b) in L(U) or equivalently in its idempotent completion
K(U); for simplicity, we might speak of morphisms between a and b in K(U), or simply morphisms
between a and b over U .

PROPOSITION 1.11 For U ⊂ Spc(K) quasi-compact and open, the restriction functor ρU : K → K(U)

induces a homeomorphism Spc(K(U))
∼→ U , under which supp(ρU(a)) = U ∩ supp(a), for any

object a ∈ K.
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Proof . In fact, by [1, Corollary 3.14], Spc(K(U)) = Spc(K/KZ) and by loc. cit. Proposition 3.11,
the localization functor induces a homeomorphism between Spc(K/KZ) and the subspace V := {P ∈
Spc(K)

∣∣ KZ ⊂ P} of Spc(K). So, it suffices to check that V = U . The last equality supp(ρU(a)) =
U ∩ supp(a) will then be a general fact about the functor Spc(−), see loc. cit. Proposition 3.6.

Let P ∈ Spc(K). By the classification of thick ⊗-ideals, loc. cit. [1, Theorem 4.10], we have

P ∈ V , that is, KZ ⊂ P , if and only if Z = supp(KZ) ⊂ supp(P)
def.= ∪a∈P supp(a). By tak-

ing complements, this is equivalent to ∩a∈PU(a) ⊂ U , where U(a) = Spc(K) � supp(a) = {Q ∈
Spc(K)

∣∣ a ∈ Q}. Tautologically, ∩a∈PU(a) = {Q ∈ Spc(K)
∣∣ P ⊂ Q}. The latter set is contained

in U if and only if P ∈ U : one direction is trivial and the other one uses that Z is specializa-
tion closed, see loc. cit. [1, Proposition 2.9]. So, P ∈ V if and only if P ∈ U , as was left to
check.

REMARK 1.12 The above result cannot hold without assuming U quasi-compact since Spc(K) is
quasi-compact for any K. It is used above to insure Z = supp(KZ).

We end this section with some general facts about triangulated categories.

LEMMA 1.13 Let K be a triangulated category. Then for every distinguished triangle in which one
object decomposes into two direct summands

a
s �� b

(
α
β

)
�� c1 ⊕ c2

(
γ δ

)
�� T a,

there exist two objects, d and e, and four distinguished triangles:

d
α0 �� b

α �� c1
α2 �� T d a

δ0 �� d
δ1 �� c2

δ �� T a,

e
β0

�� b
β

�� c2

β2
�� T e a

γ0
�� e

γ1
�� c1

γ
�� T a,

where α2 = T δ0γ , δ1 = βα0, β2 = T γ0δ and γ1 = αβ0. Moreover, the morphism s factors as s =
α0δ0 = β0γ0.

In particular, we have cone(α) � cone(δ) and cone(β) � cone(γ ).

Proof . We will prove the existence of the first two triangles, the other two are obtained symmetrically
(c1 ⊕ c2 � c2 ⊕ c1). The triangles are obtained by applying the Octahedron Axiom to the equality
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(1 0)
(

α
β

) = α as displayed below:

c1

α2

���
��

��
��

��
��

��
��

��
��

��
��

0
��

��
��

�

����

��

c1 ⊕ c2

(1 0)

������������������������������

(γ δ)

���
��

��
��

��
��

��
��

��
��

��
��

��
T c2

(
0
1

)
·		

T δ

·

��

b

(
α
β

)
���������



������������������

α

��

T d.
−T α0
·		

−T δ1



���������������������������

T a

−T s�����

·��
����

T δ0

�����������������������������

DEFINITION 1.14 We say that a commutative square as follows is a weak push-out

a
f

��

g

��

b

h

��
c

k

�� d,

if there exists a distinguished triangle a

(
f
g

)
�� b ⊕ c

(
−h k

)
�� d


 �� T a for some morphism


 : d → T (a). This is justified since (d, h, k) satisfies the universal property of the push-out of f

and g but without uniqueness of the factorization. Since such a square is then also a weak pull-back,
we call it weakly bicartesian.

2. Formal Mayer–Vietoris covers

The referee sagaciously suggested that we make clear how our proofs only depend on Theorem 1.8,
which is indeed the keystone to Mayer–Vietoris. In this logic, we now give an abstract version of
our results, only assuming the conclusions of Theorem 1.8, without necessarily carrying the tensor
structure around.

DEFINITION 2.1 Let K be an idempotent complete triangulated category. A formal Mayer–Vietoris
cover of K is the data of two thick triangulated subcategories J1 and J2 of K such that
HomK(c1, c2) = HomK(c2, c1) = 0 for every pair of objects c1 ∈ J1 and c2 ∈ J2. This implies in
particular that J1 ∩ J2 = 0.
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REMARK 2.2 The subcategories J1 and J2 do not really ‘cover’ K (for example, J1 = J2 = 0
define a ‘formal cover’). In fact, the cover is rather realized by the corresponding restrictions
(see Definition 1.10), that is, the localization functors K → K/J1 and K → K/J2 followed by
the idempotent completions. See Construction 2.4.

The following is a proto-Theorem 1.8.

LEMMA 2.3 Given a formal Mayer–Vietoris cover of K, the full subcategory J1 ⊕ J2 of K on the
objects of the form c1 ⊕ c2 where c1 ∈ J1 and c2 ∈ J2, is a thick triangulated subcategory of K.

Proof . See the proof of [2, Theorem 2.11]. We sketch it for the convenience of the reader. To see
that J1 ⊕ J2 is a triangulated subcategory, it suffices to show that the cone of any morphism f :
c1 ⊕ c2 → d1 ⊕ d2 with ci, di ∈ Ji also belongs to J1 ⊕ J2. This follows from the fact that f must
be diagonal by assumption. To see that J1 ⊕ J2 is a thick subcategory of K, take a direct summand of
an object c1 ⊕ c2 ∈ J1 ⊕ J2 that we can describe as the image, Im(e), of some (projection) idempotent
e = e2 ∈ EndK(c1 ⊕ c2). By assumption, e must be diagonal, that is, e = (

e1 0
0 e2

)
with ei = e2

i on ci .
Since K is idempotent complete, ci

∼= Im(ei) ⊕ Ker(ei) for i = 1, 2. Since Ji is thick, Im(ei) ∈ Ji

and our direct summand Im(e) ∼= Im(e1) ⊕ Im(e2) belongs to J1 ⊕ J2 as was to be shown.

Note that the above result is wrong if K is not idempotent complete, as shown in the counter-
example [2, Example 2.13], because J1 ⊕ J2 needs not be thick in K.

CONSTRUCTION 2.4 Given a formal Mayer–Vietoris cover of K (Definition 2.1), let us define J12 :=
J1 ⊕ J2. We can consider the Verdier quotients L1 = K/J1, L2 = K/J2, L12 = K/J12 and the
respective idempotent completions K1 = L̃1, K2 = L̃2 and K12 = L̃12 (see Remark 1.9). We have
the following commutative diagram:

K
ρ1

�� �������������������

ρ2 

 

	
		

		
		

		
		

		
	

ρ1 ��

ρ2

��

K1

ρ12

��

L1

ρ12����

� �

��








L2
ρ21

�� ��
��

����
��

��
�

L12
��

���������

K2
ρ21

�� K12,

(4)

where � indicates a Verdier localization and ↪→ a fully faithful cofinal embedding.

REMARK 2.5 Of course, the outer square of (4) should be thought of as the formal version of the
square (1) of the Introduction.

DEFINITION 2.6 For any i ∈ {1, 2, 12}, we say that a morphism s : a → b in K is a Ki-isomorphism
if s becomes an isomorphism in the localization Ki (or equivalently in Li). The morphism s is a
Ki-isomorphism if and only if cone(s) ∈ Ji .
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REMARK 2.7 In a formal Mayer–Vietoris situation, a morphism which is both a K1- and a K2-
isomorphism must be an isomorphism since its cone belongs to J1 ∩ J2 = 0.

NOTATION 2.8 Like in Definitions 1.10, for two objects a, b ∈ K, we abbreviate

HomK1(a, b) :=HomK1

(
ρ1(a), ρ1(b)

) = HomL1

(
ρ1(a), ρ1(b)

)

HomK2(a, b) :=HomK2

(
ρ2(a), ρ2(b)

) = HomL2

(
ρ2(a), ρ2(b)

)

HomK12(a, b) :=HomK12

(
ρ12ρ1(a), ρ12ρ1(b)

) = HomL12

(
ρ12ρ1(a), ρ12ρ1(b)

)

the groups of homomorphisms in the various localizations, see (4). More generally, we tend to drop
the mention of the restriction functors when it improves readability.

DEFINITION 2.9 Again, as in Definitions 1.10, for objects a, b ∈ K and for i ∈ {1, 2, 12}, we
refer to a morphism in HomKi

(a, b) as a morphism between a and b in Ki . By construction
of Verdier localizations, any morphism a → b in Ki is the equivalence class of a (left) fraction

f s−1 = (
a x

s		
f

�� b
)

in K, where s : x → a is a Ki-isomorphism and f : x → b is any mor-

phism in K. The equivalence relation on such fractions is given by amplification f s−1 = (f t) (st)−1

for any Ki-isomorphism t : y → x.

LEMMA 2.10 In a formal Mayer–Vietoris situation (4), every K12-isomorphism s : a → b can be
factored as s = s1 ◦ s2 where si is a Ki-isomorphism for i = 1, 2.

Proof . By hypothesis we have that cone(s) ∈ J12 = J1 ⊕ J2. Thus cone(s) may be written as
cone(s) � c1 ⊕ c2 where ci ∈ Ki . Now use Lemma 1.13 which tells that s = α0δ0 and that cone(α0) �
c1 and cone(δ0) � c2.

REMARK 2.11 One can actually prove that the above factorization is essentially unique but we shall
not use this fact below.

We now give two useful lemmas about weakly bicartesian squares (Definition 1.14).

LEMMA 2.12 Consider a weakly bicartesian square in K:

a
f

��

g

��

b

h

��
c

k

�� d.

Then f is a Ki-isomorphism if and only if k is.

Proof . There exists a distinguished triangle T −1d �� a

(
f
g

)
�� b ⊕ c

(
−h k

)
�� d. By Lemma

1.13, cone(f ) � cone(k) and the result follows.
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LEMMA 2.13 In a formal Mayer–Vietoris situation (4), consider a commutative square in K:

a
s1 ��

t2

��

b

s2

��
c

t1

�� d.

Assume that si and ti are Ki-isomorphisms for i = 1, 2. Then the square is weakly bicartesian.

Proof . Consider the weak push-out (e, u1, u2) of s1 and t2 and some morphism v : e → d induced
by weak push-out of s2 and t1:

a
s1 ��

t2

��

b

u2

��

s2

��
c

u1 ��

t1

��e
v ��


 d.

By Lemma 2.12, ui is a Ki-isomorphism for i = 1, 2. By 2-out-of-3, v is both a K1- and a
K2-isomorphism, hence an isomorphism (see Remark 2.7).

3. Mayer–Vietoris long exact sequence

CONSTRUCTION 3.1 Consider a formal Mayer–Vietoris situation (Definition 2.1) and two objects
a, b ∈ K. We define a homomorphism

∂ : HomK12(a, b) −→ HomK
(
a, T (b)

)

g �−→ ∂(g)

as follows. Let f s−1 = (
a x

s		
f

�� b
)

be a fraction representing a morphism g ∈
HomK12(a, b). The cone of the K12-isomorphism s belongs to J12 = J1 ⊕ J2. So, we can chose
a distinguished triangle

x
s �� a

(
α
β

)
�� c1 ⊕ c2

(
γ δ

)
�� T x ,

where ci ∈ Ji for i = 1, 2. Note that γα + δβ = 0, that is, γα = −δβ. Define now

∂(g) := T (f ) ◦ γα = −T (f ) ◦ δβ. (5)

This is a morphism in HomK(a, T (b)), independent of the choices, see Theorem 3.5.
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REMARK 3.2 Since T is an equivalence, the above construction also induces:

HomK12

(
T (a), b

) ∂ �� HomK
(
T (a), T (b)

)
∼=

T −1

�� HomK(a, b)

and we also denote this homomorphism by ∂ , since no confusion should follow. Explicitly, for

a morphism g = (
T (a) x

s		
f

�� b
)

in HomK12(T (a), b), choose any distinguished triangle

a

(
α
β

)
�� c1 ⊕ c2

(
γ δ

)
�� x

s �� T (a) with ci ∈ Ji for i = 1, 2; then we have ∂(g) = f ◦ γα =
−f ◦ δβ ∈ HomK(a, b).

REMARK 3.3 Note that the above definition of ∂ is asymmetric in the subcategories J1 and J2 because
of the sign involved in the definition of ∂(g), see (5). In other words, if we switch J1 and J2, we
would get the opposite homomorphism: −∂ .

REMARK 3.4 One can also define ∂ : HomK12(a, b) → HomK(a, T b) by means of right fractions
instead of left fractions. We leave it to the reader to show, using Lemma 1.13, that these two definitions
agree for judicious choices of signs. The original definition (5) of ∂ is obviously natural in the object b.
Naturality in the object a easily follows from this equivalent construction of ∂ via right fractions.

THEOREM 3.5 Consider a formal Mayer–Vietoris cover of an idempotent complete triangulated cat-
egory K (Definition 2.1) and consider the categories of Diagram (4). Then, for every pair of objects
a, b ∈ K there is a natural long exact sequence

· · · �� HomK12(T a, b)
∂ ��

∂ �� HomK(a, b)

(
ρ1
ρ2

)
�� HomK1(a, b) ⊕ HomK2(a, b)

(
−ρ12 ρ21

)
�� HomK12(a, b)

∂ ��

∂ �� HomK(a, T b) �� · · ·,

where the connecting homomorphism ∂ is defined as in Construction 3.1.

Proof . First, we have to check that the definition of ∂(f s−1) given in 3.1 does not depend on
the choice of the objects ci ∈ Ji such that cone(s) � c1 ⊕ c2. This is easy, for other ci must be
isomorphic to the chosen ones: c1 ⊕ c2 � c′

1 ⊕ c′
2 and ci ∈ Ji forces ci � c′

i for i = 1, 2, by the
assumption HomK(ci, cj ) = 0 for i �= j . The isomorphism c1 � c′

1 disappears in the composition
γ ◦ α and a fortiori in ∂(f s−1).

Then, we have to check that ∂(f s−1) only depends on the class of the fraction f s−1. To see this,

let t : y → x be a K12-isomorphism and let (f t) (st)−1 = (
a y

st		
f t

�� b
)

be the amplified
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fraction. We have to show that ∂((f t) (st)−1) = ∂(f s−1). The morphism st fits in a distinguished
triangle

y
st �� a

(
α′
β ′

)
�� d1 ⊕ d2

(γ ′δ′)
�� Ty ,

where di ∈ Ji . Comparing the triangles for s and for st yields the diagram

y
st ��

t
��

a

(
α′
β ′

)
�� d1 ⊕ d2

∃ε
���
�
�

(γ ′δ′)
�� Ty

T t
��

x
s

�� a (
α
β

) �� c1 ⊕ c2
(γ δ)

�� T x

(6)

for some morphism ε. But since HomK(di, cj ) = 0 for i �= j by the formal Mayer–Vietoris
assumption, we have that ε = (

ε1 0
0 ε2

)
. Now compute

∂((f t) (st)−1)
def.= T (f )T (t)γ ′α′ (6)= T (f )γ ε1α

′ (6)= T (f )γ α
def.= ∂(f s−1).

This proves that ∂ is well defined. The fact that ∂ does not depend on the amplification of the
fraction also shows that in order to prove that ∂ is a group homomorphism it suffices to see that
∂((f + g) s−1) = ∂(f s−1) + ∂(g s−1), which is immediate from the definition of ∂ .

We now prove that the sequence is exact. It is easy to see that all consecutive compositions are
zero. (Recall the notation for the restriction functors ρi for i ∈ {1, 2, 12, 21} from Construction 2.4.)
For instance, for i = 1, 2, we have ρi(∂(f s−1)) = 0 because ∂(f s−1) factors via ci ∈ Ji which
becomes zero in Ki . To see that ∂ ◦ ρ12 = 0, we check that ∂(f s−1) = 0 if s is a K1-isomorphism.
In this case, c2 = 0 and ∂(f s−1) factors via c2. One proves ∂ ◦ ρ21 = 0 similarly.
Exactness at HomK1(a, b) ⊕ HomK2(a, b): Let (f1, f2) ∈ HomK1(a, b) ⊕ HomK2(a, b) such that

ρ12(f1) = ρ21(f2). Write fi = (
a xi

si		
gi �� b

)
. Then there exist an object x and K12-

isomorphisms ti : x → xi such that the diagram

x1
s1

����
��

�� g1

���
��

��
�

a x

t2

��

t1

��

b

x2

s2

��������� g2

��������

(7)

is commutative in K. By Lemma 2.10 we know that every K12-isomorphism factors as a K1-
isomorphism followed by a K2-isomorphism (and viceversa) so that we may choose t2 to be a
K2-isomorphism, up to possibly amplifying the fraction g1s

−1
1 without changing the morphism f1

in K1. Similarly, we can assume t1 is a K1-isomorphism. By Lemma 2.13, the left ‘square’ of (7) is
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weakly bicartesian. Therefore (weak push-out), g1 and g2 induce a morphism f ∈ HomK(a, b) such
that f ◦ si = gi for i = 1, 2. Hence f = gis

−1
i = fi in Ki as wanted.

Exactness at HomK(a, b): Let f ∈ HomK(a, b) be such that ρi(f ) = 0 in Li = K/Ji for i = 1, 2.
This means that f factors through objects ci ∈ Ji as follows:

c1
f1

���
��

��
��

a
f

��

α
���������

β ���
��

��
��

b.

c2

f2

���������

Take now x the weak push-out of α and β. By construction of the weak push-out (Definition 1.14),
we have a distinguished triangle as in the first row of the diagram below. Since

(
f1 −f2

) · (
α
β

) =
f − f = 0, there exists a morphism h : x → b as follows:

a

(
α
β

)
�� c1 ⊕ c2

(
γ δ

)
��

(
f1 −f2

)
�����������
x

h

���
�
�

s �� T a

b.

We obtain a morphism h s−1 = (
T a x

s		 h �� b
) ∈ HomK12(T a, b). By Construction 3.1

and Remark 3.2, we have ∂(h s−1) = hγα = f1α = f .

Exactness at HomK12(a, b): Let f s−1 = (
a x

s		
f

�� b
)

be a morphism in K12 such that

∂(f s−1) = 0. As in Construction 3.1, choose a distinguished triangle

x
s �� a

(
α
β

)
�� c1 ⊕ c2

(
γ δ

)
�� T x,

with ci ∈ Ji . The assumption ∂(f s−1) = 0 reads T (f )γ α = 0. Now apply Lemma 1.13 to the above
triangle to produce objects d, e ∈ K and morphisms α0, β0, γ0 and δ0 satisfying all the conclusions of
Lemma 1.13, which the reader is encouraged to have at hand. Recall in particular that α2 = T (δ0)γ .

Claim: There exists a distinguished triangle of the form

b
γα

�� T a

(
T δ0−T γ0

)
�� T d ⊕ T e �� T b. (8)
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Indeed, the composition α2γ1 = T (δ0)γ γ1 = 0 yields an octahedron (the triangles over γ1 and α2 are
taken from the conclusions of Lemma 1.13):

T d

(
1
0

)

����
��

��
��

��
��

��
��

��
��

��
��

�

−T α0
��

��
��

�

����

��

c1

α2

�����������������������������

γ

���
��

��
��

��
��

��
��

��
��

��
��

T b
−T α

·		

−T (γ α)

·

��

e

γ1 ����������



�����������������

0

��

T d ⊕ T e,
(0 1)

·		

ζ



����������������������������

T a

−T γ0�����

·��
����

(
ϕ

−T γ0

)

������������������������������

for some morphisms ϕ and ζ . Note in particular the distinguished triangle

b
γα

�� T a

( ϕ
−T γ0

)
�� T d ⊕ T e

ζ
�� T b.

To obtain Triangle (8), we still need to ‘replace’ ϕ by T δ0. Observe that we have
(
T (δ0) − ϕ

) ◦ γ =
α2 − α2 = 0. By the distinguished triangle over γ , there exists a morphism h : T e → T d such that
T δ0 − ϕ = hT γ0. Using this equality, we get an isomorphism of triangles

b
γα

�� T a

(
ϕ

−T γ0

)
�� T d ⊕ T e

ζ
��

�
(

1 −h
0 1

)
��

T b

b
γα

�� T a (
T δ0−T γ0

) �� T d ⊕ T e
ζ ′

�� T b

,

for ζ ′ := ζ · (
1 h
0 1

)
. So, the lower triangle is distinguished and fulfills the Claim.

Using Triangle (8) and the assumption T (f ) ◦ γα = ∂(f s−1) = 0 yields a factorization of Tf as
follows:

a
γα

�� T x

Tf �����������

(
T δ0−T γ0

)
�� T d ⊕ T e

(
Tf1 Tf2

)
���
�
�

�� T a

T b

,

for some morphisms f1 : d → b and f2 : e → b. This reads f = f1δ0 − f2γ0. Using the trian-
gles of Lemma 1.13, it is easy to see that α0, γ0 are K1-isomorphisms and that β0 and δ0 are
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K2-isomorphisms. Consider now the morphisms f1 α−1
0 = (

a d
α0		

f1 �� b
)

and f2 β−1
0 =

(
a e

β0		
f2 �� b

)
in K1 and K2, respectively. When restricted to K12 they clearly satisfy

f1 α−1
0 − f2 β−1

0 = (f1δ0) (α0δ0)
−1 − (f2γ0) (β0γ0)

−1 = f s−1. The last equation uses the relation
s = α0δ0 = β0γ0 from Lemma 1.13 and the above relation f = f1δ0 − f2γ0.

4. Gluing of objects

DEFINITION 4.1 Consider a formal Mayer–Vietoris cover of an idempotent complete triangulated
category K, by means of two subcategories J1 and J2 (see Definition 2.1). Recall Diagram (4).
Consider two objects a1 ∈ K1 and a2 ∈ K2 and an isomorphism σ : a1

∼→ a2 in K12. A gluing of the
objects ai along the isomorphism σ is an object a ∈ K and two isomorphisms fi : a

∼→ ai in Ki for
i = 1, 2 such that σf1 = f2 in K12. An isomorphism of gluings α : (a, f1, f2)

∼→ (a′, f ′
1, f

′
2) is an

isomorphism α : a
∼→ a′ in K such that f ′

i α = fi in Ki for all i = 1, 2.

We first prove the gluing of objects without idempotent completions.

LEMMA 4.2 In a formal Mayer–Vietoris situation (Definition 2.1)

K
ρ1 ��

ρ2

��

L1

ρ12

��
L2

ρ21

�� L12,

two objects a1 ∈ L1, a2 ∈ L2 with an isomorphism σ : ρ12(a1)
∼→ ρ21(a2) in L12 always admit a

gluing (Definition 4.1).

Proof . The isomorphism σ can be represented by a fraction a1 x
s		 t �� a2 where s, t both

are K12-isomorphisms. By Lemma 2.10, s and t factor as s = s1s2 and t = t2t1 where si, ti are Ki-
isomorphisms, see the upper part of Diagram (9). Now complete this diagram by taking the weak
push-out of s2 and t1:

a1 x
s		

s2����
��

�

t ��

t1 ���
��

��
a2

y
s1

�������

u1 ���
��

��
z

t2

�������

u2����
��

�

a.

(9)

Applying Lemma 2.12, ui is a Ki-isomorphism. The object a is then isomorphic to ai in Ki via
f1 := s1 ◦ u−1

1 and f2 := t2 ◦ u−1
2 , respectively; the relation σf1 = f2 is satisfied in L12 because of

the commutativity of (9).



GLUING TECHNIQUES IN TRIANGULAR GEOMETRY 431

THEOREM 4.3 Assume given a formal Mayer–Vietoris cover of an idempotent complete triangulated
category K (Definition 2.1) and consider the categories constructed in 2.4. Then, given two objects
ai ∈ Ki for i = 1, 2 and an isomorphism σ : ρ12(a1)

∼→ ρ21(a2) in K12, there exists a gluing
(Definition 4.1). This gluing is unique up to (possibly non-unique) isomorphism of gluings.

Proof . Since Li is cofinal in Ki , we have ai ⊕ T (ai) ∈ Li for i = 1, 2 (see [4]). Obviously σ ⊕ T σ

gives an isomorphism ρ12(a1 ⊕ T a1)
∼→ ρ21(a2 ⊕ T a2) in K12 hence in L12 since L12 → L̃12 = K12

is fully faithful. By Lemma 4.2, there exists an object b ∈ K and isomorphisms fi : ρi(b) → bi in
Li such that (σ ⊕ T σ) ◦ ρ12(f1) = ρ21(f2). Consider now, for each i = 1, 2 the idempotent πi :
ρi(b) → ρi(b) in Li defined by:

ρi(b)
fi ��

πi

��
bi

(
1 0
0 0

)
�� bi

f −1
i �� ρi(b),

where
(

1 0
0 0

)
on bi = ai ⊕ T (ai) is the projection on ai . Now, since the diagram

ρ12(b)
ρ12(f1) �� ρ12(b1)

σ⊕T σ

��

(
1 0
0 0

)
�� ρ12(b1)

σ⊕T σ

��

ρ12(f1)
−1

�� ρ12(b)

ρ21(b)
ρ21(f2) �� ρ21(b2)

(
1 0
0 0

)
�� ρ21(b2)

ρ21(f2)
−1

�� ρ21(b)

is commutative in L12, we have that ρ12(π1) = ρ21(π2). We can now apply formal Mayer–Vietoris
for morphisms (Theorem 3.5) to π1 and π2 to show that there exists an endomorphism π : b → b

such that ρi(π) = πi for i = 1, 2. We would like π to be an idempotent, like its restrictions ρi(π) to
Li for i = 1, 2. Consider h = π2 − π . Since h = 0 in Li it factors in K through objects ci ∈ Ji as
follows:

b
h ��

���
��

��
b

h ��

���
��

��
b.

c1

�������
c2

�������

Since HomK(c1, c2) = 0 by the formal Mayer–Vietoris assumption, we have h2 = 0. Then, by a
standard trick, p := π + h − 2πh satisfies p2 = p and still has the property ρi(p) = πi since ρi(h) =
0. So p : b → b is an idempotent lifting πi for i = 1, 2. Now, our category K is idempotent complete
by hypothesis, so b splits as b � Im(p) ⊕ Ker(p). Setting a = Im(p) gives the desired object with
the property a � ai in Ki . Further details are left to the reader.

For uniqueness, suppose that (a, f1, f2) and (a′, f ′
1, f

′
2) are two gluings. By formal Mayer–Vietoris

for morphisms (Theorem 3.5) the morphisms f −1
1 ◦ f ′

1 and f −1
2 ◦ f ′

2 glue into a morphism a′ → a

which must be an isomorphism (Remark 2.7).
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5. Mayer–Vietoris in tensor triangular geometry

DEFINITION 5.1 Let K be an idempotent complete strongly closed tensor triangulated category (see
section 1). We say that we are in a Mayer–Vietoris situation if the spectrum of K is covered by two
quasi-compact open subsets Spc(K) = U1 ∪ U2. We shall denote by Zi = Spc(K) � Ui the closed
complements for i = 1, 2.

We now have the key to the results of the previous sections:

THEOREM 5.2 In a Mayer–Vietoris situation as above, the thick subcategories J1 := KZ1 and J2 :=
KZ2 define a formal Mayer–Vietoris cover of K (Definition 2.1) and J12 = J1 ⊕ J2 coincides with
KZ1∪Z2 .

Proof . This is Proposition 1.6 and Theorem 1.8.

REMARK 5.3 We do not really need to have U1 and U2 open and it would be enough to assume that
they are arbitrary intersections of quasi-compact open subsets. Indeed, the key result taken from [2],
Theorem 1.8, holds in this generality. Therefore, everything below holds in similar generality. We stick
to open pieces because this is closer to the reader’s understanding of a Mayer–Vietoris framework.

We can now apply the notions and results of section 2, 3 and 4.

DEFINITION 5.4 Recall the important Definitions 1.10. With the simplified notation ρi = ρUi
and

ρij = ρUi∩Uj ,Ui
for the restriction functors, we have the following commutative diagram

K

ρ1 �� �����������������������

ρ2

�� ���
��

��
��

��
��

��
��

ρ1 ��

ρ2

��

K(U1)

ρ12

��

L(U1)

ρ12����

� 	

�����������

L(U2)
ρ21

�� ��

�

  ���
���

��
L(U1 ∩ U2)

�


!!���������

K(U2)
ρ21

�� K(U1 ∩ U2),

(10)

which is exactly Diagram (4) here. Recall that � stands for a Verdier localization and ↪→ for a fully
faithful cofinal embedding.

Rephrasing Definition 2.6 yields:

DEFINITION 5.5 Let U ⊂ Spc(K) be a (quasi-compact) open with closed complement Z. A morphism
s : a → b in K is called a U -isomorphism if it is an isomorphism in L(U), or equivalently in K(U).
This is also equivalent to saying that cone(s) belongs to KZ which also reads supp(cone(s)) ∩ U = ∅.
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COROLLARY 5.6 In a Mayer–Vietoris situation, suppose that s : a → b is a U1 ∩ U2-isomorphism.
Then s may be factored as s = s1s2 where si is a Ui-isomorphism.

Proof . Lemma 2.10 (and Theorem 5.2).

COROLLARY 5.7 In a Mayer–Vietoris situation, consider a commutative diagram:

a
s1 ��

t2

��

b

s2

��
c

t1

�� d.

If si and ti are Ui-isomorphisms for i = 1, 2, the square is weakly bicartesian.

Proof . Lemma 2.13 (and Theorem 5.2).

COROLLARY 5.8 (Mayer–Vietoris for morphisms) In a Mayer–Vietoris situation (Definition 5.1), for
each pair of objects a, b ∈ K, the homomorphisms ∂ of Construction 3.1 and Remark 3.2 fit in a
natural long exact sequence

· · · ∂ �� HomK(a, b) �� HomK(U1)(a, b) ⊕ HomK(U2)(a, b) �� HomK(U1∩U2)(a, b)
∂ �� · · ·,

where the other homomorphisms are the restrictions and differences of restrictions.

Proof . Apply Theorem 3.5 (and Theorem 5.2). Of course, Construction 3.1 should be applied to
J1 = KZ1 and J2 = KZ2 .

Let us now discuss the gluing of objects. It is convenient to fix the following standard terminology,
generalizing Definition 4.1.

DEFINITION 5.9 Let Spc(K) = U1 ∪ · · · ∪ Un be a cover by quasi-compact open subsets. Consider
objects ai ∈ K(Ui) and isomorphisms σji : ai

∼→ aj in K(Ui ∩ Uj) such that σki = σkjσji in K(Ui ∩
Uj ∩ Uk) for 1 ≤ i, j, k ≤ n. A gluing of the objects ai along the isomorphisms σij is an object a ∈ K
and n isomorphisms fi : a

∼→ ai in K(Ui) such that σjifi = fj in K(Ui ∩ Uj) for all 1 ≤ i, j ≤ n.An

isomorphism of gluings f : (a, f1, . . . , fn)
∼→ (a′, f ′

1, . . . , f
′
n) is an isomorphism f : a

∼→ a′ in K
such that f ′

i f = fi in K(Ui) for all i = 1, . . . , n. (As before, we temporarily dropped the restriction
functors for readability.)
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COROLLARY 5.10 (Gluing of two objects) In a Mayer–Vietoris situation (Definition 5.1)

K
ρ1 ��

ρ2

��

K(U1)

ρ12

��
K(U2)

ρ21

�� K(U1 ∩ U2),

given two objects ai ∈ K(Ui) for i = 1, 2 and an isomorphism σ : ρ12(a1)
∼→ ρ21(a2) in K(U1 ∩ U2),

there exists a gluing (Definition 5.9), which is unique up to (possibly non-unique) isomorphism.

Proof . Apply Theorem 4.3 (and Theorem 5.2).

COROLLARY 5.11 (Gluing of three objects) Let Spc(K) = U1 ∪ U2 ∪ U3 be a cover by quasi-compact
open subsets. Consider three objects ai ∈ K(Ui) for i = 1, 2, 3 and three isomorphisms σij : aj

∼→ ai

in K(Ui ∩ Uj) for 1 ≤ i < j ≤ 3 satisfying the cocycle relation σ12 ◦ σ23 = σ13 in K(U1 ∩ U2 ∩ U3).
Then they admit a gluing.

Proof . Note that V := Spc(K(U1 ∪ U2)) = U1 ∪ U2 by Proposition 1.11. Using gluing of two
objects (Corollary 5.10), we can glue a1 and a2 into an object b ∈ K(V ). Using Mayer–Vietoris
for morphisms (Corollary 5.8) for the cover of V ∩ U3 by U1 ∩ U3 and U2 ∩ U3, we can construct
a (possibly non-unique) isomorphism between b and a3 in K(V ∩ U3). By gluing of two objects
(Corollary 5.10) for the cover of Spc(K) given by V and U3, we can now glue b and a3 into an object
of K.

REMARK 5.12 As the above proof shows, the problem that arises with three open subsets is that
the isomorphism between the objects b ∈ K(V ) and a3 ∈ K(U3) on V ∩ U3 is not unique. Various
choices are parameterized by HomK(V ∩U3)(T a1, a2) but we were not able to prove that two such
choices yield isomorphic gluings and we tend to believe that this is wrong in general. Nevertheless,
here is a case where the gluing works for several open subsets. This applies in particular to vector
bundles (concentrated in degree zero) in K = Dperf(X) and hence recovers the standard gluing of
vector bundles in algebraic geometry, for instance.

THEOREM 5.13 (Connective gluing of several objects) Let Spc(K) = U1 ∪ · · · ∪ Un be a cover by
quasi-compact open subsets for n ≥ 2. Consider objects ai ∈ K(Ui) and isomorphisms σji : ai

∼→ aj

in K(Ui ∩ Uj) satisfying the cocycle condition σkjσji = σki in K(Ui ∩ Uj ∩ Uk) for 1 ≤ i, j, k ≤ n.
Assume moreover the following Connectivity Condition: For any i = 2, . . . , n and for any quasi-
compact open V ⊂ Ui , we suppose that:

HomK(V )(T ai, ai) = 0. (11)

(It suffices to have it for the V ⊂ Ui which are unions of intersections of U1, . . . , Un.) Then there
exists a gluing (Definition 5.9), which is unique up to unique isomorphism.

Proof . We prove the result by induction on n. Let us first establish the n = 2 case. By gluing of
two objects (Corollary 5.10) we only need to prove the uniqueness of the isomorphism. To see this,
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it suffices to prove that for two gluings a, a′ ∈ K, two (iso)morphisms g, g′ : a → a′ which agree
in K(U1) and K(U2) are equal. By Mayer–Vietoris for morphisms (Corollary 5.8), it suffices to
show that HomK(U1∩U2)(T a, a′) = 0 which follows from the Connectivity Condition (11) and from
a � a′ � a2 in K(U2).

Suppose n ≥ 3 and the result known for n − 1. Define V = U1 ∪ . . . ∪ Un−1. Since V is quasi-
compact, we know by Proportion 1.11 that Spc(K(V )) = V and we can apply the induction hypothesis
to construct a gluing b ∈ K(V ) with isomorphisms gi : b

∼→ ai in K(Ui) for i = 1, . . . , n − 1, such
that σijgj = gi for all 1 ≤ i, j ≤ n − 1. Consider the intersection W := V ∩ Un, which is covered by
n − 1 quasi-compact subsets W = (U1 ∩ Un) ∪ · · · ∪ (Un−1 ∩ Un). In the category K(W), we have
two objects b and an (that is, their restrictions, of course) which are isomorphic in K(Ui ∩ Un) for
i = 1, . . . , n − 1 in a compatible way with the σij . By uniqueness of the gluing for n − 1, there exists

a unique isomorphism σ : b
∼→ an on V ∩ Un such that σinσ = gi for i = 1, . . . , n − 1. By the n = 2

case, we obtain the wanted gluing a ∈ K of b and an, unique up to unique isomorphism. Details are
left to the careful reader, who will note that uniqueness of the isomorphism σ (at stage n − 1) is
essential for uniqueness of the gluing a (at stage n).

In the above induction, we needed that if the tuple (U1, . . . , Un; a1, . . . , an) satisfies the
Connectivity Condition (11) for n, then:

• the tuple (U1, . . . , Un−1; a1, . . . , an−1) satisfies (11) for n − 1,
• the tuple (U1 ∩ Un, . . . , Un−1 ∩ Un; a1, . . . , an−1) satisfies (11) for n − 1,
• the 4-uple (U1 ∪ . . . ∪ Un−1, Un; b, an) satisfies (11) for n = 2, for any object b.

These are easy to check. The last one comes from the assumption i > 1 in (11).

6. Picard groups

The next definition is an elementary fact for line bundles in algebraic geometry and its generalization
to (closed) symmetric monoidal category roots back to the French geometer Jacques II de Chabannes
(1470–1525). See also [6] and further references therein.

DEFINITION 6.1 An object a ∈ K is called invertible if there exists an object b such that a ⊗ b � 1.
By adjunction, see Definition 1.4, an object a ∈ K is invertible if and only if the evaluation map
η : Da ⊗ a → 1 is an isomorphism.

LEMMA 6.2 An object a in K is invertible if and only if it is invertible in K/P for all P ∈ Spc(K).

Proof . The evaluation map η : Da ⊗ a → 1 is an isomorphism by Proposition 1.7.

DEFINITION 6.3 Here we call Picard group, Pic(K), the set of isomorphism classes of invertible
objects in K. The tensor product ⊗ : K × K → K makes Pic(K) into an abelian group with unit the
class of 1. (The reader should be aware that some authors can call Picard group something different,
like sometimes the set of all auto-equivalences of K.)

The following, essentially obvious result is well known. We give a short proof for the convenience
of the reader.
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PROPOSITION 6.4 Let X be a scheme and consider Dperf(X) its derived category of perfect complexes.
Then there is a split short exact sequence of abelian groups

0 → Pic(X) → Pic(Dperf(X)) → C(X; Z) → 0,

where C(X; Z) stands for the group of locally constant functions from X to Z.

Proof . We first describe Pic(Dperf(X)), where X = Spec(R) is the spectrum of a local ring (R, m).
In this case, any object of Dperf(R) is isomorphic to a so-called minimal complex of the form

C = · · · �� R
i

di �� R
i−1 �� · · ·,

where, for all i, the differential di is a matrix with coefficients in m. If C is invertible in Dperf(R) so
is C̄, its image under the functor Dperf(R) → Dperf(R/m). But all the differentials of C̄ are 0 and the
relation C ⊗ D � R, for some complex D, hence C̄ ⊗ D̄ � R/m, shows that the complex C must
be R concentrated in some degree, that is, there exists n0 = n0(C; R) such that 
i = 1 if i = n0 and

i = 0 otherwise.

For a global X, the map Pic(Dperf(X)) → C(X; Z) is now easily defined: for an invertible complex
C ∈ Dperf(X) and for x ∈ X denote by Cx its image in Dperf(OX,x). The function fC : X → Z is then
defined by x �→ n0(Cx; OX,x). The rest of the proof is straightforward: a perfect complex which is
locally trivial is quasi-isomorphic to its homology in degree zero, which must be a line bundle.

REMARK 6.5 The result is the same if one works with bigger derived categories instead of Dperf(X).
See for instance Fausk’s paper [6]. This might look more general than the above Proposition but one
should keep in mind that invertible objects in such big categories are necessarily compact, just by
abstract non-sense, see [7, Proposition A.2.8] for instance. So, the above argument already contains
most of the relevant algebraic geometry for this problem.

DEFINITION 6.6 Define Gm(K) = HomK(1, 1)× to be the group of invertible elements of the
(commutative) ring HomK(1, 1).

THEOREM 6.7 In a Mayer–Vietoris situation (Definition 5.1), there is an exact sequence of abelian
groups

· · · �� HomK(U1∩U2)(T 1, 1)
1+∂

��

1+∂
�� Gm(K) �� Gm(K(U1)) ⊕ Gm(K(U2)) �� Gm(K(U1 ∩ U2))

δ ��

δ �� Pic(K) �� Pic(K(U1)) ⊕ Pic(K(U2)) �� Pic(K(U1 ∩ U2)).

The homomorphism ∂ is as in Construction 3.1 and the unlabelled homomorphisms are the restrictions
and the (multiplicative) differences thereof.
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The homomorphism δ : Gm(K(U1 ∩ U2)) → Pic(K) is defined by gluing two copies of 1 by means

of Corollary 5.10. Explicitly, it can be described as follows: Let σ = ts−1 : 1 x
s		 t �� 1

in Gm(K(U1 ∩ U2)), where s and t are U1 ∩ U2-isomorphisms; by Corollary 5.6, there exist fac-
torizations s = s1s2 and t = t2t1 where si and ti are Ui-isomorphisms; then δ(σ ) is defined as the
isomorphism class of the weak push-out p ∈ K of x1 and x2 over x

1 x
s		

s2����
��

�

t ��

t1 ���
��

��
1

x1

s1

�������

u1 ���
��

��
x2

t2

�������

u2����
��

�

p.

(12)

Proof . First note that the homomorphism 1 + ∂ : HomK(U1∩U2)(T 1, 1) → HomK(1, 1) defined by
g �→ 1 + ∂(g) lands in Gm(K). Indeed for any g ∈ HomK(U1∩U2)(T 1, 1) one has ∂(g) ◦ ∂(g) = 0,
since ∂(g) : 1 → 1 is zero in K(Ui) and hence factors via some object of KZi

for i = 1, 2 and since
HomK(KZ1 , KZ2) = 0 by Proposition 1.6. So, 1 + ∂(g) is invertible with inverse 1 − ∂(g).

The connecting homomorphism δ : Gm(K(U1 ∩ U2)) → Pic(K) produces an object p ∈ K, see
Diagram (12), which is isomorphic to 1 in K(U1) via s1u

−1
1 and in K(U2) via t2u

−1
2 , in a compatible

way with σ in K(U1 ∩ U2). The object p is then the gluing of two copies of 1 along the isomorphism
σ in K(U1 ∩ U2). Such a gluing is unique up to isomorphism by Corollary 5.10, and this gluing
only depends on the map σ , and not on the various choices (s, t, s1, s2, t1, t2, p). So, the map δ is

well defined and we now check that it is a group homomorphism. Take 1 x
s		 t �� 1 and

1 x ′s ′
		 t ′ �� 1 two units in Gm(K(U1 ∩ U2)). With the same notations as above, factor these

morphisms and perform the corresponding weak push-outs:

1 x
s		

s2����
��

�

t ��

t1 ���
��

��
1

x1

s1

�������

u1 ���
��

��
x2

t2

�������

u2����
��

�

p

1 x ′s ′
		

s ′
2

����
��

�

t ′ ��

t ′1
���

��
��

1

x ′
1

s ′
1

�������

u′
1

���
��

��
x ′

2

t ′2

�������

u′
2

�����
��

p′.
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In a symmetric monoidal category, the composition of two endomorphisms of the unit object is equal
to their tensor product. Hence we tensor together the two above diagrams to obtain the following one:

1 x ⊗ x ′s⊗s ′
		

s2⊗s ′
2���������

t⊗t ′
��

t1⊗t ′1 ���������
1

x1 ⊗ x ′
1

s1⊗s ′
1

""�������

u1⊗u′
1 ���������

x2 ⊗ x ′
2

t2⊗t ′2

���������

u2⊗u′
2��








p ⊗ p′.

By Corollary 5.7, the above middle square is weakly bicartesian as well. Hence, p ⊗ p′ = δ(σ ⊗
σ ′) = δ(σσ ′). This shows that δ is an group homomorphism.

(Recall the restriction functors ρi and ρij from Definition 5.4.) It is straightforward from the above
definition of δ that ρi ◦ δ = 0 for i = 1, 2. To see that δ ◦ ρ12 = 0, for instance, one can assume that
s2 = id and t2 = id1 in (12), in which case u2 must also be an isomorphism, that is, p � x2 = 1. The
other compositions are clearly 0 (keeping in mind that 0 means 1 or 1 in the multiplicative groups
Gm and Pic). The exactness of the left-hand side of the sequence up to Gm(K) follows from Mayer–
Vietoris for morphisms (Corollary 5.8) applied at a = b = 1. It remains to check the exactness of the
sequence at four spots.
Exactness at Gm(K(U1)) ⊕ Gm(K(U2)): This is again immediate from Mayer–Vietoris for mor-
phisms (Corollary 5.8) recalling that a local isomorphism is an isomorphism (Proposition 1.7).

Exactness at Gm(K(U1 ∩ U2)): Let σ = (
1 x

s		 t �� 1
)

in Gm(K(U1 ∩ U2)) be such that
δ(σ ) � 1 in K. This means that one can find a diagram of the form

1 x
s		

s2����
��

�

t ��

t1 ���
��

��
1

x1

s1

�������

u1 ���
��

��
x2

t2

�������

u2����
��

�

1,

see (12). One then sees two morphisms, namely σ1 = u1s
−1
1 ∈ Gm(K(U1)) and σ2 = u2t

−1
2 ∈

Gm(K(U2)), such that σ−1
2 ◦ σ1 = σ in Gm(K(U1 ∩ U2)).

Exactness at Pic(K): Let p be an invertible object in K such that ρi(p) � 1 for i = 1, 2. Thus there

exist Ui-isomorphisms 1 yi

si		
ti �� p. Performing the weak pull-back of s1 and s2 one obtains
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the diagram

1 y
u2

����
��

� u1

���
��

��
1

y1
t1

�������

s1 ���
��

��
y2

t2

�������

s2����
��

�

p,

and this defines
(

1 y
t1u2		

t2u1 �� 1
) ∈ Gm(K(U1 ∩ U2)). The image of this morphism under δ

is clearly isomorphic to p by construction, see (12), the middle square in the above diagram being
weakly bicartesian.
Exactness at Pic(K(U1)) ⊕ Pic(K(U2)): This follows from gluing of two objects (Corollary 5.10)
and from invertibility being a local property (see Lemma 6.2).

THEOREM 6.8 Let K be an idempotent complete strongly closed tensor triangulated category. Suppose
that HomK(U)(T 1, 1) = 0 for every quasi-compact open subsets U ⊂ Spc(K). Then there exists a
unique sheaf Gm on Spc(K), such that Gm(U) = Gm(K(U)) when U ⊂ Spc(K) is quasi-compact
open. Moreover, there exists an injective homomorphism from the first Čech cohomology of Spc(K)

with coefficients in Gm into the Picard group of K

α : Ȟ
1
(Spc(K), Gm) ↪→ Pic(K),

which sends a Gm-cocycle σ to the unique gluing of copies of 1 along the isomorphisms over the
pairwise intersections given by σ , as described in Theorem 5.13.

Proof . We first prove by induction on n the following
Claim: Given a cover of a quasi-compact subsetV ⊂ Spc(K)byn ≥ 2 quasi-compact open subsets,

V = U1 ∪ · · · ∪ Un, and given morphisms fi : 1 → 1 in K(Ui) such that fi = fj in K(Ui ∩ Uj) for
1 ≤ i, j ≤ n, there exists a unique morphism f : 1 → 1 in K(V ) such that f = fi in K(Ui).

Replacing K by K(V ), we can assume that V = Spc(K) (see Proposition 1.11). Now, for
n = 2, this is Mayer–Vietoris for morphisms (Corollary 5.8). Note that uniqueness follows from
HomK(U1∩U2)(T 1, 1) = 0. The induction on n is then easy: To construct f , glue the n − 1 first mor-
phisms fi into a morphism g : 1 → 1 in K(U1 ∪ · · · ∪ Un−1) and show that it agrees with fn in
K((U1 ∪ · · · ∪ Un−1) ∩ Un) – this uses uniqueness for n − 1; then apply the n = 2 case to glue g and
fn into a global f . To prove uniqueness of f , proceed similarly, using uniqueness for n − 1 and for
n = 2 again. Hence the Claim.

Then the existence of the sheaf Gm is immediate from the claim and from the fact that quasi-compact
open subsets form a basis of the topology of Spc(K) by [1, Remark 2.7 and Proposition 2.14]. For
the same reason and because of quasi-compactness of Spc(K), to define the homomorphism α, it
suffices to consider Gm-cocycles over finite covers of Spc(K) by quasi-compact open subsets. In this
situation, the gluing is guaranteed by Theorem 5.13. Hence α is well defined.

Finally, injectivity of α is easy. Indeed, given a Gm-cocyle σ over a cover Spc(K) = U1 ∪ · · · ∪ Un

with every Ui quasi-compact open, the gluing a ∈ Pic(K) comes with isomorphisms fi : a
∼→ 1 in

each K(Ui), compatible with the σ(Ui ∩ Uj) as usual. Now, if a = 1, the latter compatibilty means
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that the Čech boundary of the 0-cochain defined by the fi ∈ Gm(Ui) is nothing but σ , that is, σ = 0
in Ȟ

1
(Spc(K), Gm).

REMARK 6.9 Note that the condition HomK(U)(T 1, 1) = 0 does not hold in general, for instance in
modular representation theory, that is, for K = kG − stab. For instance, for k = F2 and G = Z/2,
we even have T 1 � 1.

REMARK 6.10 When the condition HomK(U)(T 1, 1) = 0 holds for every quasi-compact open U ⊂
Spc(K) and when Spc(K) happens to be a scheme, Theorem 6.8 gives an injective homomorphism
Pic(Spc(K)) ↪→ Pic(K). In the case of K = Dperf(X) for X a scheme, this homomorphism is the one
of Proposition 6.4.

7. Excision

For later use, we state the next result in greater generality than in section 0. See Remark 5.3. In the
following statement, the reader can as well consider the case of A and B reduced to a singleton, that
is, U open and Y closed.

THEOREM 7.1 (Excision) Let K be an idempotent complete strongly closed tensor triangulated cate-
gory and let Y ⊂ U ⊂ Spc(K). Assume that Y = ∪α∈AYα with every Yα closed with quasi-compact
complement and assume that U = ∩β∈BUβ with every Uβ open and quasi-compact. Then the restric-
tion functor ρ : K → K(U) induces an equivalence between the respective subcategories of objects
supported on Y :

KY
∼−→ K(U)Y .

Proof . Remark first of all that Spc(K(U)) ∼= U by Proposition 1.11 (stated for A = {∗} but whose
proof generalizes verbatim to the present situation).

Let us see that the functor ρ : KY → K(U)Y is full. Given a, b ∈ KY and a frac-

tion a x
s		

f
�� b with s a U -isomorphism, we have supp(cone(s)) ∩ supp(T a) ⊂

supp(cone(s)) ∩ U = ∅, so HomK(a, cone(s)) = 0 by Proposition 1.6. So, any distinguished tri-
angle starting with the morphism s must have zero in second place, that is, the morphism s is a split
epimorphism, say s ◦ u = ida for some morphism u : a → x. Amplifying the fraction f s−1 by u

shows that this morphism f s−1 is equal to (the restriction of) the morphism f u : a → b.
Let us see that the functor ρ : KY → K(U)Y is faithful. Let f : a → b be a morphism in KY such

that ρ(f ) = 0, that is, there exists a U -isomorphism s : x → a such that f s = 0. As above, s must
be a split epimorphism, hence f = 0.

Let us see that the functor ρ : KY → K(U)Y is essentially surjective. Let b ∈ K(U)Y . There
is an object a ∈ K such that ρ(a) = b ⊕ T (b). We have supp(a) ∩ U = suppU(b) ∪ suppU(T b) =
suppU(b) ⊂ Y . So, if we call Z = Spc(K) � U the complement of U , we have proved that supp(a) ⊂
Y ∪ Z. Since Y ∩ Z = ∅, we know by Theorem 1.8 that a � c ⊕ d with supp(c) ⊂ Y and supp(d) ⊂
Z. But then ρ(a) = ρ(c) and we have found an object c ∈ KY such that ρ(c) = b ⊕ T (b). Now,
consider the idempotent of b ⊕ T (b) corresponding to the projection on b. Since ρ is fully faithful,
there exists a corresponding idempotent on the object c, which then decomposes accordingly, one
factor going to b, as was to be shown.
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REMARK 7.2 As an exercise, one can reformulate and prove Excision in the framework of formal
Mayer–Vietoris covers (Definition 2.1).

REMARK 7.3 If needed, the reader can establish the following assertion: given a point P ∈ Spc(K),
the ‘local’ category K/P , or rather its idempotent completion, is equivalent to the colimit of the
categories K(U), over the quasi-compact open neighborhoods U � P .
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