290 research outputs found

    Aerodynamic resistance and penman-monteith evapotranspiration over a seasonally two-layered canopy in semiarid central Australia

    Full text link
    Accurate prediction of evapotranspiration E depends upon representative characterization of meteorological conditions in the boundary layer. Drag and bulk transfer coefficient schemes for estimating aerodynamic resistance to vapor transfer were compared over a semiarid natural woodland ecosystem in central Australia. Aerodynamic resistance was overestimated from the drag coefficient, resulting in limited E at intermediate values of vapor pressure deficit. Large vertical humidity gradients were present during the summer, causing divergence between momentum and vapor transport within and above the canopy surface. Because of intermittency in growth of the summer-active, rain-dependent understory and physiological responses of the canopy, leaf resistance varied from less than 50sm-1 to greater than 106sm-1, in which the particularly large values were obtained from inversion of drag coefficient resistance. Soil moisture limitations further contributed to divergence between actual and reference E. Unsurprisingly, inclusion of site-specific meteorological (e.g., vertical humidity gradients) and hydrological (e.g., soil moisture content) information improved the accuracy of predicting E when applying Penman-Monteith analysis. These results apply regardless of canopy layering (i.e., even when the understory was not present) wherever atmospheric humidity gradients develop and are thus not restricted to two-layer canopies in semiarid regions. © 2013 American Meteorological Society

    Anomaly-Free Brane Worlds in Seven Dimensions

    Get PDF
    We present an orbifold compactification of the minimal seven dimensional supergravity. The vacuum is a slice of AdS_7 where six-branes of opposite tension are located at the orbifold fixed points. The cancellation of gauge and gravitational anomalies restricts the gauge group and matter content on the boundaries. In addition anomaly cancellation fixes the boundary gauge couplings in terms of the gravitational constant, and the mass parameter of the Chern-Simons term.Comment: 10 pages, LaTeX; v2: typos corrected, references adde

    Critical Strain Region Evaluation of Self-Assembled Semiconductor Quantum Dots

    Get PDF
    A novel peak finding method to map the strain from high resolution transmission electron micrographs, known as the Peak Pairs method, has been applied to In(Ga) As/AlGaAs quantum dot (QD) samples, which present stacking faults emerging from the QD edges. Moreover, strain distribution has been simulated by the finite element method applying the elastic theory on a 3D QD model. The agreement existing between determined and simulated strain values reveals that these techniques are consistent enough to qualitatively characterize the strain distribution of nanostructured materials. The correct application of both methods allows the localization of critical strain zones in semiconductor QDs, predicting the nucleation of defects, and being a very useful tool for the design of semiconductor device

    Soil moisture controls on phenology and productivity in a semi-arid critical zone

    Get PDF
    © 2016 Elsevier B.V. The Earth's Critical Zone, where physical, chemical and biological systems interact, extends from the top of the canopy to the underlying bedrock. In this study, we investigated soil moisture controls on phenology and productivity of an Acacia woodland in semi-arid central Australia. Situated on an extensive sand plain with negligible runoff and drainage, the carry-over of soil moisture content (θ) in the rhizosphere enabled the delay of phenology and productivity across seasons, until conditions were favourable for transpiration of that water to prevent overheating in the canopy. Storage of soil moisture near the surface (in the top few metres) was promoted by a siliceous hardpan. Pulsed recharge of θ above the hardpan was rapid and depended upon precipitation amount: 150 mm storm− 1 resulted in saturation of θ above the hardpan (i.e., formation of a temporary, discontinuous perched aquifer above the hardpan in unconsolidated soil) and immediate carbon uptake by the vegetation. During dry and inter-storm periods, we inferred the presence of hydraulic lift from soil storage above the hardpan to the surface due to (i) regular daily drawdown of θ in the reservoir that accumulates above the hardpan in the absence of drainage and evapotranspiration; (ii) the dimorphic root distribution wherein most roots were found in dry soil near the surface, but with significant root just above the hardpan; and (iii) synchronisation of phenology amongst trees and grasses in the dry season. We propose that hydraulic redistribution provides a small amount of moisture that maintains functioning of the shallow roots during long periods when the surface soil layer was dry, thereby enabling Mulga to maintain physiological activity without diminishing phenological and physiological responses to precipitation when conditions were favourable to promote canopy cooling

    Vacuum properties of nonsymmetric gravity in de Sitter space

    Get PDF
    We consider quantum effects of a massive antisymmetric tensor field on the dynamics of de Sitter space-time. Our starting point is the most general, stable, linearized Lagrangian arising in nonsymmetric gravitational theories (NGTs), where part of the antisymmetric field mass is generated by the cosmological term. We construct a renormalization group (RG) improved effective action by integrating out one loop vacuum fluctuations of the antisymmetric tensor field and show that, in the limit when the RG scale goes to zero, the Hubble parameter -- and thus the effective cosmological constant -- relaxes rapidly to zero. We thus conclude that quantum loop effects in de Sitter space can dramatically change the infrared sector of the on-shell gravity, making the expansion rate insensitive to the original (bare) cosmological constant.Comment: 32 pages, 2 eps figure

    An anemia of Alzheimer\u27s disease

    Get PDF
    Lower hemoglobin is associated with cognitive impairment and Alzheimer\u27s disease (AD). Since brain iron homeostasis is perturbed in AD, we investigated whether this is peripherally reflected in the hematological and related blood chemistry values from the Australian Imaging Biomarker and Lifestyle (AIBL) study (a community-based, cross-sectional cohort comprising 768 healthy controls (HC), 133 participants with mild cognitive impairment (MCI) and 211 participants with AD). We found that individuals with AD had significantly lower hemoglobin, mean cell hemoglobin concentrations, packed cell volume and higher erythrocyte sedimentation rates (adjusted for age, gender, APOE-ε4 and site). In AD, plasma iron, transferrin, transferrin saturation and red cell folate levels exhibited a significant distortion of their customary relationship to hemoglobin levels. There was a strong association between anemia and AD (adjusted odds ratio (OR)=2.43, confidence interval (CI) (1.31, 4.54)). Moreover, AD emerged as a strong risk factor for anemia on step-down regression, even when controlling for all other available explanations for anemia (adjusted OR=3.41, 95% CI (1.68, 6.92)). These data indicated that AD is complicated by anemia, which may itself contribute to cognitive decline

    Supersymmetry breaking in noncommutative quantum mechanics

    Full text link
    Supersymmetric quantum mechanics is formulated on a two dimensional noncommutative plane and applied to the supersymmetric harmonic oscillator. We find that the ordinary commutative supersymmetry is partially broken and only half of the number of supercharges are conserved. It is argued that this breaking is closely related to the breaking of time reversal symmetry arising from noncommutativity

    The Ekpyrotic Universe: Colliding Branes and the Origin of the Hot Big Bang

    Get PDF
    We propose a cosmological scenario in which the hot big bang universe is produced by the collision of a brane in the bulk space with a bounding orbifold plane, beginning from an otherwise cold, vacuous, static universe. The model addresses the cosmological horizon, flatness and monopole problems and generates a nearly scale-invariant spectrum of density perturbations without invoking superluminal expansion (inflation). The scenario relies, instead, on physical phenomena that arise naturally in theories based on extra dimensions and branes. As an example, we present our scenario predominantly within the context of heterotic M-theory. A prediction that distinguishes this scenario from standard inflationary cosmology is a strongly blue gravitational wave spectrum, which has consequences for microwave background polarization experiments and gravitational wave detectors.Comment: 67 pages, 4 figures. v2,v3: minor corrections, references adde

    Optimising Psychoeducation for Transient Ischaemic Attack and Minor Stroke Management (OPTIMISM): Protocol for a feasibility randomised controlled trial

    Get PDF
    Background: A transient ischaemic attack (TIA) and minor stroke are medical emergencies and often a warning sign of future strokes if remain untreated. Few studies have investigated the long-term psychosocial effects of TIA and minor stroke. Secondary prevention and medical management are often the primary focus with limited access offered for further psychosocial support. Psychoeducational interventions can provide education and advice to people with physical health conditions and, with suitable tailoring, could be appropriate for people after TIA and minor stroke. This study aims to develop a group psychoeducational intervention for people after TIA and minor stroke and to test whether it is acceptable and feasible. Methods: This mixed-methodology study involves two phases: Phase 1) A qualitative study to determine the content of a suitable intervention; Phase 2) A single-centre feasibility randomised controlled trial to evaluate the acceptability of this intervention. The overall study has ethical approval. Stroke survivors have been involved in designing and monitoring the trial. The aim is to recruit 30-40 participants from a Stroke/TIA Service, within 6 months following their diagnosis. Participants will be randomly allocated to either the usual care control group or the intervention group (psychoeducational programme). The programme will consist of six group sessions based on providing education, psychological and social support. The primary outcomes will relate to the feasibility aims of the study. Outcomes will be collected at 3 and 6 months to assess mood, quality of life, knowledge and satisfaction, and resource use. Discussion: There is a need to develop and evaluate effective interventions that enhance the education provided to people after TIA and minor stroke and to promote their psychosocial wellbeing. Findings will indicate the acceptability of the intervention and parameters needed to conduct a definitive trial
    • …
    corecore