16,962 research outputs found
Electron-impact rotational excitation of symetric-top molecular ions
We present electron-impact rotational excitation calculations for polyatomic molecular ions. The theory developed in this paper is an extension of the work of Rabadán et al (Rabadán I, Sarpal B K and Tennyson J 1998 J. Phys. B: At. Mol. Opt. Phys. 31 2077) on linear molecular ions to the case of symmetric-top species. The H3+ and H3O+ ions, as well as their deuterated forms D3+ and D3O+, are used as test cases and cross sections are obtained at various levels of approximation for impact energies up to 5 eV. As in the linear case, the widely used Coulomb–Born (CB) approximation is found to be unreliable in two major aspects: transitions with ΔJ > 1 are entirely dominated by short-range interactions and threshold effects are important at very low energies. Electron collisional selection rules are found to be consistent with the CB theory. In particular, dominant transitions are those for which ΔJ ≤ 2 and ΔK = 0
Near threshold rotational excitation of molecular ions by electron-impact
New cross sections for the rotational excitation of H by electrons are
calculated {\it ab initio} at low impact energies. The validity of the
adiabatic-nuclei-rotation (ANR) approximation, combined with -matrix
wavefunctions, is assessed by comparison with rovibrational quantum defect
theory calculations based on the treatment of Kokoouline and Greene ({\it Phys.
Rev. A} {\bf 68} 012703 2003). Pure ANR excitation cross sections are shown to
be accurate down to threshold, except in the presence of large oscillating
Rydberg resonances. These resonances occur for transitions with
and are caused by closed channel effects. A simple analytic formula is derived
for averaging the rotational probabilities over such resonances in a 3-channel
problem. In accord with the Wigner law for an attractive Coulomb field,
rotational excitation cross sections are shown to be large and finite at
threshold, with a significant but moderate contribution from closed channels.Comment: 3 figures, a5 page
Experiments with a fully instrumented split Stirling cryocooler
A practical model that can be used to accurately size and optimally split stirling cryocoolers is discussed. A practical model that could be used to extrapolate existing designs to meet different specifications was developed. However, to do this detailed knowledge of the dynamic operating parameters of this type of cryocooler is required. The first stage is to fully instrument a refrigerator so that various dynamic parameters can be measured. The second stage involves the application of these measurements to the design and optimization of a range of coolers
Many parameter Hoelder perturbation of unbounded operators
If is a -mapping, for , having
as values unbounded self-adjoint operators with compact resolvents and common
domain of definition, parametrized by in an (even infinite dimensional)
space, then any continuous (in ) arrangement of the eigenvalues of is
indeed in .Comment: LaTeX, 4 pages; The result is generalized from Lipschitz to Hoelder.
Title change
Collisional excitation of HC3N by para- and ortho-H2
New calculations for rotational excitation of cyanoacetylene by collisions
with hydrogen molecules are performed to include the lowest 38 rotational
levels of HC3N and kinetic temperatures to 300 K. Calculations are based on the
interaction potential of Wernli et al. A&A, 464, 1147 (2007) whose accuracy is
checked against spectroscopic measurements of the HC3N-H2 complex. The quantum
coupled-channel approach is employed and complemented by quasi-classical
trajectory calculations. Rate coefficients for ortho-H2 are provided for the
first time. Hyperfine resolved rate coefficients are also deduced. Collisional
propensity rules are discussed and comparisons between quantum and classical
rate coefficients are presented. This collisional data should prove useful in
interpreting HC3N observations in the cold and warm ISM, as well as in
protoplanetary disks.Comment: 8 pages, 2 tables, 4 figures, accepted for publication in MNRA
Electron-impact rotational and hyperfine excitation of HCN, HNC, DCN and DNC
Rotational excitation of isotopologues of HCN and HNC by thermal
electron-impact is studied using the molecular {\bf R}-matrix method combined
with the adiabatic-nuclei-rotation (ANR) approximation. Rate coefficients are
obtained for electron temperatures in the range 56000 K and for transitions
among all levels up to J=8. Hyperfine rates are also derived using the
infinite-order-sudden (IOS) scaling method. It is shown that the dominant
rotational transitions are dipole allowed, that is those for which . The hyperfine propensity rule is found to be stronger
than in the case of HeHCN collisions. For dipole allowed transitions,
electron-impact rates are shown to exceed those for excitation of HCN by He
atoms by 6 orders of magnitude. As a result, the present rates should be
included in any detailed population model of isotopologues of HCN and HNC in
sources where the electron fraction is larger than 10, for example in
interstellar shocks and comets.Comment: 12 pages, 4 figures, accepted in MNRAS (2007 september 3
Quasimonoenergetic electron beams produced by colliding cross-polarized laser pulses in underdense plasmas
The interaction of two laser pulses in an underdense plasma has proven to be
able to inject electrons in plasma waves, thus providing a stable and tunable
source of electrons. Whereas previous works focused on the "beatwave" injection
scheme in which two lasers with the same polarization collide in a plasma, this
present letter studies the effect of polarization and more specifically the
interaction of two colliding cross-polarized laser pulses. It is shown both
theoretically and experimentally that electrons can also be pre-accelerated and
injected by the stochastic heating occurring at the collision of two
cross-polarized lasers and thus, a new regime of optical injection is
demonstrated. It is found that injection with cross-polarized lasers occurs at
higher laser intensities.Comment: 4 pages, 4 figure
Concept of a laser-plasma based electron source for sub-10 fs electron diffraction
We propose a new concept of an electron source for ultrafast electron
diffraction with sub-10~fs temporal resolution. Electrons are generated in a
laser-plasma accelerator, able to deliver femtosecond electron bunches at 5 MeV
energy with kHz repetition rate. The possibility of producing this electron
source is demonstrated using Particle-In-Cell simulations. We then use particle
tracking simulations to show that this electron beam can be transported and
manipulated in a realistic beamline, in order to reach parameters suitable for
electron diffraction. The beamline consists of realistic static magnetic optics
and introduces no temporal jitter. We demonstrate numerically that electron
bunches with 5~fs duration and containing 1.5~fC per bunch can be produced,
with a transverse coherence length exceeding 2~nm, as required for electron
diffraction
- …
