ELECTRON COLLISIONS IN HARSH ENVIRONMENTS

Faure, A.¹ and Tennyson, J.²

Abstract.

We present our most recent **R**-matrix calculations on the electron-impact rotational excitation of astronomically important molecules. We show that electron collisions are very efficient in producing rotationally 'hot' molecules in harsh environments.

1 Introduction

Rate coefficients for the collisional excitation of molecules by electrons are crucial parameters for modelling the physical conditions of harsh environments such as diffuse interstellar clouds or photo-dissocation regions (PDRs), where electrons are abundant (Black 1998). In fact, even at modest electron fractions, $n(e)/n(H) \approx 10^{-5}$, electron collisions can dominate the molecular excitation because electron-impact collisional rates exceed that for excitation by neutral species (mainly H, He and H₂) by typically 5 orders of magnitude.

The reference methods for obtaining electron-impact excitation rates have been the Coulomb-Born approximation for molecular ions and the Born approximation for neutral species. These methods assume that the collisional excitation rates can be simply determined by the dominant long-range interaction. Within this approach, these theories predict that only single jumps in rotational quanta are allowed for polar species. Recent **R**-matrix studies have shown that this prediction is incorrect (Faure & Tennyson 2003 and references therein). Indeed, **R**-matrix calculations have shown that the inclusion of short-range interactions can lead to rotational transitions with ΔJ up to 6.

2 Results

In environments below the critical density, it has often been assumed that molecular ions rotationally excited by electron impacts will emit $j = 1 \rightarrow 0$ photons only.

 \bigodot EDP Sciences 2003

 $^{^1}$ Laboratoire d'Astrophysique, Observatoire de Grenoble, BP 53, 38041 Grenoble Cédex 09, France

 $^{^2}$ Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT, United Kingdom

SF2A 2003

Our recent **R**-matrix calculations have shown that in all cases considered so far a significant flux from higher rotational states should also be emitted. In particular, Faure & Tennyson (2003) have shown that electron collisions might contribute to the pumping of a maser in the $(4, 4) \rightarrow (3, 1)$ transition of H_3^+ at 217 GHz.

In the case of H_2O , Faure et al. (2003) have found that the dominant transitions are those for which $\Delta J = 0, \pm 1$, as predicted by the dipolar Born approximation. However, a pure Born treatment was found to overestimate the cross sections close to threshold energies (see figure) and to neglect important dipole-forbidden transitions. In the context of cometary water, the contribution of electron collisions might thus explain the need for large H_2O-H_2O collisional excitation rates in population models which neglect electrons.

Fig. 1. Rotational excitation cross section for the $0_{00} - 1_{11}$ transition in H₂O. Our results are represented by the solid line. The dashed line gives the pure Born calculation.

3 Conclusion

We have shown that electron-impact excitation is a very efficient process to rotationally excite molecules in harsh environments. An important prediction concerns the contribution of electron collisions to the pumping of cosmic masers.

References

Black, J., 1998, Faraday. Discuss., 109, 257 Faure, A., Tennyson, J., 2003, MNRAS, 340, 468 Faure, A., Gorfinkiel J. D., Tennyson, J., MNRAS, submitted

238