16,300 research outputs found

    Electron-impact rotational excitation of symetric-top molecular ions

    Get PDF
    We present electron-impact rotational excitation calculations for polyatomic molecular ions. The theory developed in this paper is an extension of the work of Rabadán et al (Rabadán I, Sarpal B K and Tennyson J 1998 J. Phys. B: At. Mol. Opt. Phys. 31 2077) on linear molecular ions to the case of symmetric-top species. The H3+ and H3O+ ions, as well as their deuterated forms D3+ and D3O+, are used as test cases and cross sections are obtained at various levels of approximation for impact energies up to 5 eV. As in the linear case, the widely used Coulomb–Born (CB) approximation is found to be unreliable in two major aspects: transitions with ΔJ > 1 are entirely dominated by short-range interactions and threshold effects are important at very low energies. Electron collisional selection rules are found to be consistent with the CB theory. In particular, dominant transitions are those for which ΔJ ≤ 2 and ΔK = 0

    Electron collision in harsh environments

    Get PDF

    Electromagnetic topology: Characterization of internal electromagnetic coupling

    Get PDF
    The main principles are presented of a method dealing with the resolution of electromagnetic internal problems: Electromagnetic Topology. A very interesting way is to generalize the multiconductor transmission line network theory to the basic equation of the Electromagnetic Topology: the BLT equation. This generalization is illustrated by the treatment of an aperture as a four port junction. Analytical and experimental derivations of the scattering parameters are presented. These concepts are used to study the electromagnetic coupling in a scale model of an aircraft, and can be seen as a convenient means to test internal electromagnetic interference

    Weak maser emission of methyl formate toward Sagittarius B2(N) in the Green Bank Telescope PRIMOS Survey

    Full text link
    A non-LTE radiative transfer treatment of cis-methyl formate (HCOOCH3) rotational lines is presented for the first time using a set of theoretical collisional rate coefficients. These coefficients have been computed in the temperature range 5-30 K by combining coupled-channel scattering calculations with a high accuracy potential energy surface for HCOOCH3-He. The results are compared to observations toward the Sagittarius B2(N) molecular cloud using the publicly available PRIMOS survey from the Green Bank Telescope. A total of 49 low-lying transitions of methyl formate, with upper levels below 25 K, are identified. These lines are found to probe a presumably cold (~30 K), moderately dense (~1e4 cm-3) and extended region surrounding Sgr B2(N). The derived column density of ~4e14 cm-2 is only a factor of ~10 larger than the column density of the trans conformer in the same source. Provided that the two conformers have the same spatial distribution, this result suggests that strongly non-equilibrium processes must be involved in their synthesis. Finally, our calculations show that all detected emission lines with a frequency below 30 GHz are (collisionally pumped) weak masers amplifying the continuum of Sgr B2(N). This result demonstrates the importance and generality of non-LTE effects in the rotational spectra of complex organic molecules at centimetre wavelengths.Comment: 33 pages, 9 figures, accepted in The Astrophysical Journal (january 4 2014

    Many parameter Hoelder perturbation of unbounded operators

    Full text link
    If uA(u)u\mapsto A(u) is a C0,αC^{0,\alpha}-mapping, for 0<α10< \alpha \le 1, having as values unbounded self-adjoint operators with compact resolvents and common domain of definition, parametrized by uu in an (even infinite dimensional) space, then any continuous (in uu) arrangement of the eigenvalues of A(u)A(u) is indeed C0,αC^{0,\alpha} in uu.Comment: LaTeX, 4 pages; The result is generalized from Lipschitz to Hoelder. Title change

    Electron-impact rotational and hyperfine excitation of HCN, HNC, DCN and DNC

    Full text link
    Rotational excitation of isotopologues of HCN and HNC by thermal electron-impact is studied using the molecular {\bf R}-matrix method combined with the adiabatic-nuclei-rotation (ANR) approximation. Rate coefficients are obtained for electron temperatures in the range 5-6000 K and for transitions among all levels up to J=8. Hyperfine rates are also derived using the infinite-order-sudden (IOS) scaling method. It is shown that the dominant rotational transitions are dipole allowed, that is those for which ΔJ=1\Delta J=1. The hyperfine propensity rule ΔJ=ΔF\Delta J=\Delta F is found to be stronger than in the case of He-HCN collisions. For dipole allowed transitions, electron-impact rates are shown to exceed those for excitation of HCN by He atoms by 6 orders of magnitude. As a result, the present rates should be included in any detailed population model of isotopologues of HCN and HNC in sources where the electron fraction is larger than 106^{-6}, for example in interstellar shocks and comets.Comment: 12 pages, 4 figures, accepted in MNRAS (2007 september 3

    Quasimonoenergetic electron beams produced by colliding cross-polarized laser pulses in underdense plasmas

    Full text link
    The interaction of two laser pulses in an underdense plasma has proven to be able to inject electrons in plasma waves, thus providing a stable and tunable source of electrons. Whereas previous works focused on the "beatwave" injection scheme in which two lasers with the same polarization collide in a plasma, this present letter studies the effect of polarization and more specifically the interaction of two colliding cross-polarized laser pulses. It is shown both theoretically and experimentally that electrons can also be pre-accelerated and injected by the stochastic heating occurring at the collision of two cross-polarized lasers and thus, a new regime of optical injection is demonstrated. It is found that injection with cross-polarized lasers occurs at higher laser intensities.Comment: 4 pages, 4 figure

    Low-energy electron collisions with water: elastic and rotationally inelastic scattering

    Get PDF
    Differential, integral and momentum transfer cross sections for the vibrationally elastic and rotationally inelastic scattering of electrons from water at low collision energies (E < 7 eV) are reported. The R-matrix method is used to compute the body-fixed T-matrices while the scattering calculations are performed within the fixed-nuclei approximation corrected with the standard Born-closure formula. Our calculations are compared with the very recent experimental results of Cho et al (2003 Radiat. Phys. Chem. 68 115). The differential and momentum transfer cross sections are in good agreement with the experimental results. The relative contribution of the rotationally inelastic processes is investigated in some detail. In particular, the importance of the pure elastic process at very low energy is emphasized
    corecore