16,300 research outputs found
Electron-impact rotational excitation of symetric-top molecular ions
We present electron-impact rotational excitation calculations for polyatomic molecular ions. The theory developed in this paper is an extension of the work of Rabadán et al (Rabadán I, Sarpal B K and Tennyson J 1998 J. Phys. B: At. Mol. Opt. Phys. 31 2077) on linear molecular ions to the case of symmetric-top species. The H3+ and H3O+ ions, as well as their deuterated forms D3+ and D3O+, are used as test cases and cross sections are obtained at various levels of approximation for impact energies up to 5 eV. As in the linear case, the widely used Coulomb–Born (CB) approximation is found to be unreliable in two major aspects: transitions with ΔJ > 1 are entirely dominated by short-range interactions and threshold effects are important at very low energies. Electron collisional selection rules are found to be consistent with the CB theory. In particular, dominant transitions are those for which ΔJ ≤ 2 and ΔK = 0
Electromagnetic topology: Characterization of internal electromagnetic coupling
The main principles are presented of a method dealing with the resolution of electromagnetic internal problems: Electromagnetic Topology. A very interesting way is to generalize the multiconductor transmission line network theory to the basic equation of the Electromagnetic Topology: the BLT equation. This generalization is illustrated by the treatment of an aperture as a four port junction. Analytical and experimental derivations of the scattering parameters are presented. These concepts are used to study the electromagnetic coupling in a scale model of an aircraft, and can be seen as a convenient means to test internal electromagnetic interference
Weak maser emission of methyl formate toward Sagittarius B2(N) in the Green Bank Telescope PRIMOS Survey
A non-LTE radiative transfer treatment of cis-methyl formate (HCOOCH3)
rotational lines is presented for the first time using a set of theoretical
collisional rate coefficients. These coefficients have been computed in the
temperature range 5-30 K by combining coupled-channel scattering calculations
with a high accuracy potential energy surface for HCOOCH3-He. The results are
compared to observations toward the Sagittarius B2(N) molecular cloud using the
publicly available PRIMOS survey from the Green Bank Telescope. A total of 49
low-lying transitions of methyl formate, with upper levels below 25 K, are
identified. These lines are found to probe a presumably cold (~30 K),
moderately dense (~1e4 cm-3) and extended region surrounding Sgr B2(N). The
derived column density of ~4e14 cm-2 is only a factor of ~10 larger than the
column density of the trans conformer in the same source. Provided that the two
conformers have the same spatial distribution, this result suggests that
strongly non-equilibrium processes must be involved in their synthesis.
Finally, our calculations show that all detected emission lines with a
frequency below 30 GHz are (collisionally pumped) weak masers amplifying the
continuum of Sgr B2(N). This result demonstrates the importance and generality
of non-LTE effects in the rotational spectra of complex organic molecules at
centimetre wavelengths.Comment: 33 pages, 9 figures, accepted in The Astrophysical Journal (january 4
2014
Many parameter Hoelder perturbation of unbounded operators
If is a -mapping, for , having
as values unbounded self-adjoint operators with compact resolvents and common
domain of definition, parametrized by in an (even infinite dimensional)
space, then any continuous (in ) arrangement of the eigenvalues of is
indeed in .Comment: LaTeX, 4 pages; The result is generalized from Lipschitz to Hoelder.
Title change
Electron-impact rotational and hyperfine excitation of HCN, HNC, DCN and DNC
Rotational excitation of isotopologues of HCN and HNC by thermal
electron-impact is studied using the molecular {\bf R}-matrix method combined
with the adiabatic-nuclei-rotation (ANR) approximation. Rate coefficients are
obtained for electron temperatures in the range 56000 K and for transitions
among all levels up to J=8. Hyperfine rates are also derived using the
infinite-order-sudden (IOS) scaling method. It is shown that the dominant
rotational transitions are dipole allowed, that is those for which . The hyperfine propensity rule is found to be stronger
than in the case of HeHCN collisions. For dipole allowed transitions,
electron-impact rates are shown to exceed those for excitation of HCN by He
atoms by 6 orders of magnitude. As a result, the present rates should be
included in any detailed population model of isotopologues of HCN and HNC in
sources where the electron fraction is larger than 10, for example in
interstellar shocks and comets.Comment: 12 pages, 4 figures, accepted in MNRAS (2007 september 3
Quasimonoenergetic electron beams produced by colliding cross-polarized laser pulses in underdense plasmas
The interaction of two laser pulses in an underdense plasma has proven to be
able to inject electrons in plasma waves, thus providing a stable and tunable
source of electrons. Whereas previous works focused on the "beatwave" injection
scheme in which two lasers with the same polarization collide in a plasma, this
present letter studies the effect of polarization and more specifically the
interaction of two colliding cross-polarized laser pulses. It is shown both
theoretically and experimentally that electrons can also be pre-accelerated and
injected by the stochastic heating occurring at the collision of two
cross-polarized lasers and thus, a new regime of optical injection is
demonstrated. It is found that injection with cross-polarized lasers occurs at
higher laser intensities.Comment: 4 pages, 4 figure
Low-energy electron collisions with water: elastic and rotationally inelastic scattering
Differential, integral and momentum transfer cross sections for the vibrationally elastic and rotationally inelastic scattering of electrons from water at low collision energies (E < 7 eV) are reported. The R-matrix method is used to compute the body-fixed T-matrices while the scattering calculations are performed within the fixed-nuclei approximation corrected with the standard Born-closure formula. Our calculations are compared with the very recent experimental results of Cho et al (2003 Radiat. Phys. Chem. 68 115). The differential and momentum transfer cross sections are in good agreement with the experimental results. The relative contribution of the rotationally inelastic processes is investigated in some detail. In particular, the importance of the pure elastic process at very low energy is emphasized
- …
