2,536 research outputs found

    Holographic fermions in charged Gauss-Bonnet black hole

    Full text link
    We study the properties of the Green's functions of the fermions in charged Gauss-Bonnet black hole. What we want to do is to investigate how the presence of Gauss-Bonnet coupling constant α\alpha affects the dispersion relation, which is a characteristic of Fermi or non-Fermi liquid, as well as what properties such a system has, for instance, the Particle-hole (a)symmetry. One important result of this research is that we find for q=1q=1, the behavior of this system is different from that of the Landau Fermi liquid and so the system can be candidates for holographic dual of generalized non-Fermi liquids. More importantly, the behavior of this system increasingly similar to that of the Landau Fermi liquid when α\alpha is approaching its lower bound. Also we find that this system possesses the Particle-hole asymmetry when q≠0q\neq 0, another important characteristic of this system. In addition, we also investigate briefly the cases of the charge dependence.Comment: 22 pages, 6 figures; version published in JHE

    Stellar spectroscopy: Fermions and holographic Lifshitz criticality

    Full text link
    Electron stars are fluids of charged fermions in Anti-de Sitter spacetime. They are candidate holographic duals for gauge theories at finite charge density and exhibit emergent Lifshitz scaling at low energies. This paper computes in detail the field theory Green's function G^R(w,k) of the gauge-invariant fermionic operators making up the star. The Green's function contains a large number of closely spaced Fermi surfaces, the volumes of which add up to the total charge density in accordance with the Luttinger count. Excitations of the Fermi surfaces are long lived for w <~ k^z. Beyond w ~ k^z the fermionic quasiparticles dissipate strongly into the critical Lifshitz sector. Fermions near this critical dispersion relation give interesting contributions to the optical conductivity.Comment: 38 pages + appendices. 9 figure

    Acoustic cues to tonal contrasts in Mandarin: Implications for cochlear implants

    Get PDF
    The present study systematically manipulated three acoustic cues-fundamental frequency (f0), amplitude envelope, and duration-to investigate their contributions to tonal contrasts in Mandarin. Simplified stimuli with all possible combinations of these three cues were presented for identification to eight normal-hearing listeners, all native speakers of Mandarin from Taiwan. The f0 information was conveyed either by an f0-controlled sawtooth carrier or a modulated noise so as to compare the performance achievable by a clear indication of voice f0 and what is possible with purely temporal coding of f0. Tone recognition performance with explicit f0 was much better than that with any combination of other acoustic cues (consistently greater than 90% correct compared to 33%-65%; chance is 25%). In the absence of explicit f0, the temporal coding of f0 and amplitude envelope both contributed somewhat to tone recognition, while duration had only a marginal effect. Performance based on these secondary cues varied greatly across listeners. These results explain the relatively poor perception of tone in cochlear implant users, given that cochlear implants currently provide only weak cues to f0, so that users must rely upon the purely temporal (and secondary) features for the perception of tone. (c) 2008 Acoustical Society of America

    Mixed RG Flows and Hydrodynamics at Finite Holographic Screen

    Full text link
    We consider quark-gluon plasma with chemical potential and study renormalization group flows of transport coefficients in the framework of gauge/gravity duality. We first study them using the flow equations and compare the results with hydrodynamic results by calculating the Green functions on the arbitrary slice. Two results match exactly. Transport coefficients at arbitrary scale is ontained by calculating hydrodynamics Green functions. When either momentum or charge vanishes, transport coefficients decouple from each other.Comment: 22 pages, 6 figure

    Deconstructing holographic liquids

    Full text link
    We argue that there exist simple effective field theories describing the long-distance dynamics of holographic liquids. The degrees of freedom responsible for the transport of charge and energy-momentum are Goldstone modes. These modes are coupled to a strongly coupled infrared sector through emergent gauge and gravitational fields. The IR degrees of freedom are described holographically by the near-horizon part of the metric, while the Goldstone bosons are described by a field-theoretical Lagrangian. In the cases where the holographic dual involves a black hole, this picture allows for a direct connection between the holographic prescription where currents live on the boundary, and the membrane paradigm where currents live on the horizon. The zero-temperature sound mode in the D3-D7 system is also re-analyzed and re-interpreted within this formalism.Comment: 21 pages, 2 figure

    Dipole Coupling Effect of Holographic Fermion in the Background of Charged Gauss-Bonnet AdS Black Hole

    Full text link
    We investigate the holographic fermions in the charged Gauss-Bonnet AdSdAdS_{d} black hole background with the dipole coupling between fermion and gauge field in the bulk. We show that in addition to the strength of the dipole coupling, the spacetime dimension and the higher curvature correction in the gravity background also influence the onset of the Fermi gap and the gap distance. We find that the higher curvature effect modifies the fermion spectral density and influences the value of the Fermi momentum for the appearance of the Fermi surface. There are richer physics in the boundary fermion system due to the modification in the bulk gravity.Comment: 16 pages, accepted for publication in JHE

    Semi-local quantum liquids

    Get PDF
    Gauge/gravity duality applied to strongly interacting systems at finite density predicts a universal intermediate energy phase to which we refer as a semi-local quantum liquid. Such a phase is characterized by a finite spatial correlation length, but an infinite correlation time and associated nontrivial scaling behavior in the time direction, as well as a nonzero entropy density. For a holographic system at a nonzero chemical potential, this unstable phase sets in at an energy scale of order of the chemical potential, and orders at lower energies into other phases; examples include superconductors and antiferromagnetic-type states. In this paper we give examples in which it also orders into Fermi liquids of "heavy" fermions. While the precise nature of the lower energy state depends on the specific dynamics of the individual system, we argue that the semi-local quantum liquid emerges universally at intermediate energies through deconfinement (or equivalently fractionalization). We also discuss the possible relevance of such a semi-local quantum liquid to heavy electron systems and the strange metal phase of high temperature cuprate superconductors.Comment: 31 pages, 7 figure

    Holographic models for undoped Weyl semimetals

    Full text link
    We continue our recently proposed holographic description of single-particle correlation functions for four-dimensional chiral fermions with Lifshitz scaling at zero chemical potential, paying particular attention to the dynamical exponent z = 2. We present new results for the spectral densities and dispersion relations at non-zero momenta and temperature. In contrast to the relativistic case with z = 1, we find the existence of a quantum phase transition from a non-Fermi liquid into a Fermi liquid in which two Fermi surfaces spontaneously form, even at zero chemical potential. Our findings show that the boundary system behaves like an undoped Weyl semimetal.Comment: 64 pages, 19 figure

    A soliton menagerie in AdS

    Full text link
    We explore the behaviour of charged scalar solitons in asymptotically global AdS4 spacetimes. This is motivated in part by attempting to identify under what circumstances such objects can become large relative to the AdS length scale. We demonstrate that such solitons generically do get large and in fact in the planar limit smoothly connect up with the zero temperature limit of planar scalar hair black holes. In particular, for given Lagrangian parameters we encounter multiple branches of solitons: some which are perturbatively connected to the AdS vacuum and surprisingly, some which are not. We explore the phase space of solutions by tuning the charge of the scalar field and changing scalar boundary conditions at AdS asymptopia, finding intriguing critical behaviour as a function of these parameters. We demonstrate these features not only for phenomenologically motivated gravitational Abelian-Higgs models, but also for models that can be consistently embedded into eleven dimensional supergravity.Comment: 62 pages, 21 figures. v2: added refs and comments and updated appendice

    Prioritising surveillance for alien organisms transported as stowaways on ships travelling to South Africa

    Get PDF
    The global shipping network facilitates the transportation and introduction of marine and terrestrial organisms to regions where they are not native, and some of these organisms become invasive. South Africa was used as a case study to evaluate the potential for shipping to contribute to the introduction and establishment of marine and terrestrial alien species (i.e. establishment debt) and to assess how this varies across shipping routes and seasons. As a proxy for the number of species introduced (i.e. 'colonisation pressure') shipping movement data were used to determine, for each season, the number of ships that visited South African ports from foreign ports and the number of days travelled between ports. Seasonal marine and terrestrial environmental similarity between South African and foreign ports was then used to estimate the likelihood that introduced species would establish. These data were used to determine the seasonal relative contribution of shipping routes to South Africa's marine and terrestrial establishment debt. Additionally, distribution data were used to identify marine and terrestrial species that are known to be invasive elsewhere and which might be introduced to each South African port through shipping routes that have a high relative contribution to establishment debt. Shipping routes from Asian ports, especially Singapore, have a particularly high relative contribution to South Africa's establishment debt, while among South African ports, Durban has the highest risk of being invaded. There was seasonal variation in the shipping routes that have a high relative contribution to the establishment debt of the South African ports. The presented method provides a simple way to prioritise surveillance effort and our results indicate that, for South Africa, port-specific prevention strategies should be developed, a large portion of the available resources should be allocated to Durban, and seasonal variations and their consequences for prevention strategies should be explored further. (Résumé d'auteur
    • 

    corecore