68 research outputs found

    A Comparative Neuroanatomical Study of the Red Nucleus of the Cat, Macaque and Human

    Get PDF
    BACKGROUND:The human red nucleus (Nr) is comparatively less well-studied than that of cats or monkeys. Given the functional importance of reticular and midbrain structures in control of movement and locomotion as well as from an evolutionary perspective, we investigated the nature and extent of any differences in Nr projections to the olivary complex in quadrupedal and bipedal species. Using neuroanatomical tract-tracing techniques we developed a "neural sheet" hypothesis allowing us to propose how rubro-olivary relations differ among the three species. METHODS AND FINDINGS:Wheat germ agglutinin-horseradish peroxidase staining supports findings that the cat's nucleus accessories medialis of Bechtrew (NB) projects mainly to the lateral bend of the principal olive. We clarified boundaries among nucleus of Darkschewitsch (ND), NB and parvicellular red nucleus (pNr) of the cat's neural sheet. The macaque's ND-medial accessory olivary projection is rostro-caudally organized and the dorsomedial and ventrolateral parts of the macaque's pNr may project to the principal olive's rostral and caudal dorsal lamella; in cat it projects as well to pNr. Myelin- and Nissl-stained sections show that a well-developed dorsomedial part of the human Nr consists of densely packed cells, deriving small myelinated fibers that continue into the medial central tegmental tract. CONCLUSIONS:Based on these findings we suggest there are distinct bipedal-quadrupedal differences for Nr projections to the olivary complex. We propose the Nr of cats and monkeys comprise the ND, NB and pNr in a zonal sheet-like structure, retaining clear nuclear boundaries and an isolated, well-developed mNr. The human NB may be distinguished from its more specialised ND (ND lies alongside a well-developed pNr) in the human central gray. Phylogenetically, the NB may have been translocated into a roll-shaped Nr in the reticular formation, the dorsomedial portion of which might correspond to the cat's and monkey's NB

    The balance of feelings: vestibular modulation of bodily sensations.

    Get PDF
    The vestibular system processes information about head movement and orientation. No unimodal vestibular cortex has been identified in the mammalian brain. Rather, vestibular inputs are combined with many other sensory signals in the cortex. This arrangement suggests that vestibular input could influence processing in other sensory modalities. Here we show that vestibular stimulation differentially modulates two submodalities of the somatosensory system, increasing sensitivity to tactile input, and independently reducing sensitivity to nociceptive input. These modulations of touch and pain can clearly be distinguished from supramodal attentional effects of vestibular stimulation, because they are bilateral and operate in different directions. Outside the artificial conditions of laboratory stimulation, the vestibular system codes movements of the head, indicating a new relation between the body and the external world. We suggest the vestibular system participates in a form of sensory signal management, changing the balance between the various sensory systems as the relation between the body and the external environment changes. This sensory rebalancing may be a crucial element in the brain's capacity to reorient towards novel or salient features in the environment

    Visuomotor Cerebellum in Human and Nonhuman Primates

    Get PDF
    In this paper, we will review the anatomical components of the visuomotor cerebellum in human and, where possible, in non-human primates and discuss their function in relation to those of extracerebellar visuomotor regions with which they are connected. The floccular lobe, the dorsal paraflocculus, the oculomotor vermis, the uvula–nodulus, and the ansiform lobule are more or less independent components of the visuomotor cerebellum that are involved in different corticocerebellar and/or brain stem olivocerebellar loops. The floccular lobe and the oculomotor vermis share different mossy fiber inputs from the brain stem; the dorsal paraflocculus and the ansiform lobule receive corticopontine mossy fibers from postrolandic visual areas and the frontal eye fields, respectively. Of the visuomotor functions of the cerebellum, the vestibulo-ocular reflex is controlled by the floccular lobe; saccadic eye movements are controlled by the oculomotor vermis and ansiform lobule, while control of smooth pursuit involves all these cerebellar visuomotor regions. Functional imaging studies in humans further emphasize cerebellar involvement in visual reflexive eye movements and are discussed
    corecore