327 research outputs found
Giant vesicles at the prolate-oblate transition: A macroscopic bistable system
Giant phospholipid vesicles are shown to exhibit thermally activated
transitions between a prolate and an oblate shape on a time scale of several
seconds. From the fluctuating contour of such a vesicle we extract ellipticity
as an effective reaction coordinate whose temporal probability distribution is
bimodal. We then reconstruct the effective potential from which we derive an
activation energy of the order of in agreement with theoretical
calculations. The dynamics of this transition is well described within a
Kramers model of overdamped diffusion in a bistable potential. Thus, this
system can serve as a model for macroscopic bistability.Comment: 10 pages, LaTeX, epsfig, 4 eps figures included, to appear in
Europhys. Let
Recommended from our members
Gene Networks of Fully Connected Triads with Complete Auto-Activation Enable Multistability and Stepwise Stochastic Transitions
Fully-connected triads (FCTs), such as the Oct4-Sox2-Nanog triad, have been implicated as recurring transcriptional motifs embedded within the regulatory networks that specify and maintain cellular states. To explore the possible connections between FCT topologies and cell fate determinations, we employed computational network screening to search all possible FCT topologies for multistability, a dynamic property that allows the rise of alternate regulatory states from the same transcriptional network. The search yielded a hierarchy of FCTs with various potentials for multistability, including several topologies capable of reaching eight distinct stable states. Our analyses suggested that complete auto-activation is an effective indicator for multistability, and, when gene expression noise was incorporated into the model, the networks were able to transit multiple states spontaneously. Different levels of stochasticity were found to either induce or disrupt random state transitioning with some transitions requiring layovers at one or more intermediate states. Using this framework we simulated a simplified model of induced pluripotency by including constitutive overexpression terms. The corresponding FCT showed random state transitioning from a terminal state to the pluripotent state, with the temporal distribution of this transition matching published experimental data. This work establishes a potential theoretical framework for understanding cell fate determinations by connecting conserved regulatory modules with network dynamics. Our results could also be employed experimentally, using established developmental transcription factors as seeds, to locate cell lineage specification networks by using auto-activation as a cipher
Phosphorus-acquisition strategies of canola, wheat and barley in soil amended with sewage sludges
Crops have different strategies to acquire poorly-available soil phosphorus (P) which are dependent on their architectural, morphological, and physiological root traits, but their capacity to enhance P acquisition varies with the type of fertilizer applied. The objective of this study was to examine how P-acquisition strategies of three main crops are affected by the application of sewage sludges, compared with a mineral P fertilizer. We carried out a 3-months greenhouse pot experiment and compared the response of P-acquisition traits among wheat, barley and canola in a soil amended with three sludges or a mineral P fertilizer. Results showed that the P-acquisition strategy differed among crops. Compared with canola, wheat and barley had a higher specific root length and a greater root carboxylate release and they acquired as much P from sludge as from mineral P. By contrast, canola shoot P content was greater with sludge than with mineral P. This was attributed to a higher rootreleased acid phosphatase activity which promoted the mineralization of sludge-derived P-organic. This study showed that contrasted P-acquisition strategies of crops allows increased use of renewable P resources by optimizing combinations of crop and the type of P fertilizer applied within the cropping system
How to determine local elastic properties of lipid bilayer membranes from atomic-force-microscope measurements: A theoretical analysis
Measurements with an atomic force microscope (AFM) offer a direct way to
probe elastic properties of lipid bilayer membranes locally: provided the
underlying stress-strain relation is known, material parameters such as surface
tension or bending rigidity may be deduced. In a recent experiment a
pore-spanning membrane was poked with an AFM tip, yielding a linear behavior of
the force-indentation curves. A theoretical model for this case is presented
here which describes these curves in the framework of Helfrich theory. The
linear behavior of the measurements is reproduced if one neglects the influence
of adhesion between tip and membrane. Including it via an adhesion balance
changes the situation significantly: force-distance curves cease to be linear,
hysteresis and nonzero detachment forces can show up. The characteristics of
this rich scenario are discussed in detail in this article.Comment: 14 pages, 9 figures, REVTeX4 style. New version corresponds to the
one accepted by PRE. The result section is restructured: a comparison to
experimental findings is included; the discussion on the influence of
adhesion between AFM tip and membrane is extende
Effective Area-Elasticity and Tension of Micro-manipulated Membranes
We evaluate the effective Hamiltonian governing, at the optically resolved
scale, the elastic properties of micro-manipulated membranes. We identify
floppy, entropic-tense and stretched-tense regimes, representing different
behaviors of the effective area-elasticity of the membrane. The corresponding
effective tension depends on the microscopic parameters (total area, bending
rigidity) and on the optically visible area, which is controlled by the imposed
external constraints. We successfully compare our predictions with recent data
on micropipette experiments.Comment: To be published in Phys. Rev. Let
Active Membrane Fluctuations Studied by Micropipet Aspiration
We present a detailed analysis of the micropipet experiments recently
reported in J-B. Manneville et al., Phys. Rev. Lett. 82, 4356--4359 (1999),
including a derivation of the expected behaviour of the membrane tension as a
function of the areal strain in the case of an active membrane, i.e.,
containing a nonequilibrium noise source. We give a general expression, which
takes into account the effect of active centers both directly on the membrane,
and on the embedding fluid dynamics, keeping track of the coupling between the
density of active centers and the membrane curvature. The data of the
micropipet experiments are well reproduced by the new expressions. In
particular, we show that a natural choice of the parameters quantifying the
strength of the active noise explains both the large amplitude of the observed
effects and its remarkable insensitivity to the active-center density in the
investigated range. [Submitted to Phys Rev E, 22 March 2001]Comment: 14 pages, 5 encapsulated Postscript figure
Implications des relations sol-plante en ingénierie écologique des habitats et sols métallifères dégradés: le cas des habitats riches en cuivre du Katanga (République Démocratique du Congo)
International audienceLa restauration écologique des habitats dégradés et des sols nus riches en métaux lourds créés par l'activité minière est devenue aujourd'hui un enjeu environnemental majeur pour réduire l'érosion de la biodiversité et la dégradation des paysages, des sols et de l'eau. Les études de restauration écologique basées sur l'identification des espèces sans faire référence aux traits fonctionnels des plantes sont limitées au réservoir régional des espèces et rendent difficile les interprétations et les applications dans des contextes écologiques variés. En comparant les traits fonctionnels des plantes entre l'habitat métallifère non dégradé et un gradient de succession d'habitats secondaires, il est possible de définir des traits liés à la capacité de colonisation des sols nus riches en métaux lourds. Cette première tentative d'analyse des traits sur les habitats riches en métaux lourds permet ainsi d'identifier les traits candidats pour la phytoremediation. Un des futurs challenges est de créer de nouveaux écosystèmes fonctionnels sur les sols nus contaminés par les métaux lourds e
- …