19 research outputs found
Ăcologie du dinoflagellĂ© toxique Alexandrium tamarense dans l'estuaire maritime du Saint-Laurent : facteurs environnementaux affectant l'initiation et le dĂ©veloppement des efflorescences
L'accumulation de phycotoxines paralysantes chez les mollusques liée aux proliférations
estivales du dinoflagellé toxique Alexandrium tamarense et les fermetures de secteurs coquilliers
qui en résultent sont des évÚnements récurrents dans l'estuaire maritime du Saint-Laurent
(EMSL). Les facteurs qui contrÎlent l'initiation et le développement des efflorescences d'A.
tamarense dans l'EMSL sont toutefois à ce jour méconnus. De plus, le rÎle des interactions entre
la biologie d'A. tamarense et les facteurs environnementaux propres Ă L'EMSL, notamment son
hydrodynamisme complexe, n'a pas encore été exploré. L'objectif de cette étude est donc
d'améliorer nos connaissances sur les facteurs environnementaux qui influencent la dynamique
des efflorescences d'A . tamarense dans l'EMSL et d'intégrer ces nouvelles connaissances dans
un premier modÚle couplé physique-biologie de développement des efflorescences d'A .
tamarense pour l'EMSL.
La premiĂšre partie de cette Ă©tude avait pour objectif de mesurer le taux de croissance d'A.
tamarense lors de la marée rouge qui a eu lieu dans l'EMSL durant l'été 1998 et d' évaluer les
facteurs qui influencent les variations de croissance. Les taux de croissance, estimés lors
d'incubations en conditions in situ de température et de lumiÚre, variaient entre 0 et 0.55 jouf l.
Bien que l' on ait retrouvé des cellules d'A . tamarense dans des eaux de salinités trÚs différentes
(20.8 à 29.5), les plus fortes concentrations et surtout les taux de croissance positifs n 'ont été
mesurés que dans les eaux de plus faible salinité (inférieure à 24.5). Dans ces conditions, les
variations du taux de croissance semblaient contrÎlées par la disponibilité en phosphates. Les
résultats des expériences d' incubations nous ont amenés à formuler deux hypothÚses: (1) les
cellules d'A. tamarense effectuent des migrations verticales nocturnes vers les couches profondes
riches en nitrates de l'EMSL et (2) cette capacité migratoire des cellules d'A. tamarense entraßne
une limitation en phosphates de leur croissance dans la couche de surface.
Ces hypothÚses ont été testées lors d'une mission menée dans l'EMSL durant l' été 2000.
Une population d'A. tamarense a été suivie pendant 48 h à l'aide d' une bouée dérivante afin
d 'étudier les capacités migratoires de cette espÚce. Une série d'expériences d' incubations ont
aussi permis d'évaluer la condition nutritionnelle de la population d'A. tamarense au début du
suivi. Les résultats de cette étude montrent que les cellules effectuent deux types de migrations
ayant des buts différents: (1) des migrations nocturnes entre la couche euphotique et les couches
profondes riches en nitrates permettant probablement aux cellules d' accumuler les réserves
d 'azote nécessaires à leur croissance, et (2) des migrations diurnes dans la couche euphotique leur
permettant d'éviter les fortes intensités lumineuses potentiellement dommageables prÚs de la
surface. Les résultats des expériences d'enrichissement supportent l' hypothÚse issue de la
premiÚre partie de notre étude selon laquelle la capacité des cellules à acquérir des nitrates en
profondeur lors de migrations nocturnes entraĂźne une limitation de la croissance par les
phosphates dans les eaux de surface. Ces résultats, ainsi que ceux de la premiÚre partie de cette
étude nous amÚnent à aborder la problématique de la sensibilité des efflorescences de
dinoflagellés au vent et à la turbulence sous un angle nouveau, celui des migrations verticales.
Cette sensibilitĂ© pourrait, en fait, ĂȘtre en partie liĂ©e Ă un effet indirect de la turbulence via une
inhibition des migrations verticales. Cette inhibition pourrait affecter les efflorescences d'A.
tamarense dans l'EMSL en empĂȘchant les cellules de se concentrer durant le jour Ă la profondeur
correspondant à leur intensité lumineuse optimale et d'avoir accÚs aux couches profondes riches
en nitrates la nuit.
Dans la troisiÚme partie de cette étude, nous avons développé un premier modÚle couplé
physique-biologie des efflorescences d'A. tamarense dans l'EMSL, Ă partir des observations
recueillies précédemment. En bref, le modÚle biologique prend en compte la distribution des
kystes de dormance d'A . tamarense, la germination de ces kystes et la croissance des cellules
d'A . tamarense limitée par la température et la salinité. L'évolution temporelle de l'efflorescence
d'A. tamarense, la coĂŻncidence de cette efflorescence avec le panache d' eau douce des riviĂšres
Manicouagan et aux-Outardes (M-O), ainsi que les variations temporelles dans les gradients
nord-sud de concentrations d'A. tamarense générées par le modÚle sont globalement en accord
avec les observations récoltées lors de la marée rouge de 1998. Les simulations révÚlent que la
coĂŻncidence entre les efflorescences d'A . tamarense et le panache d'eau douce M-O pourrait ĂȘtre,
en partie, le résultat d'une inoculation préférentielle des eaux de surface le long de la cÎte nord
par les cellules nouvellement germées, en particulier dans la région influencée par ce panache. De
plus, nos résultats suggÚrent que l'évolution spatio-temporelle de l'efflorescence est dominée par
des cycles de rétention-advection des eaux de surface du panache M-O. Ces cycles, influencés
par le régime des vents, contrÎlent le transport des populations d'A. tamarense de la partie nord
de l'EMSL oĂč ils se dĂ©veloppent vers la cĂŽte sud. La dynamique du panache d'eau douce M-O, et
donc les vents, pourraient aussi affecter le succĂšs des efflorescences d'A. tamarense en
influençant leur temps de résidence dans l'estuaire. Par conséquent, il est possible que des
variations du rĂ©gime des vents puissent ĂȘtre en partie responsables de l'importante variabilitĂ©
interannuelle des efflorescences d'A . tamarense dans l'EMSL
Inter and intra-specific growth and domoic acid production in relation to nutrient ratios and concentrations in Pseudo-nitzschia : phosphate an important factor
The factors responsible for inducing the synthesis of toxins and responses from toxic phytoplankton blooms remain unclear. In this study we compare the influence of genotypic (at both the intra and interspecific levels) and environmental factors (nutrient concentration and ratio) on growth (in terms of cell densities) and domoic acid (DA) production in three Pseudo-nitzschia species: P. australis, P.pungens and P.fradulenta. A strong phosphate effect was detected. More precisely, a low initial concentration in phosphate, even at high initial nitrogen and silicate concentrations, induced the highest DA concentrations and the lowest cell densities in all strains/species studied. In contrast, a low initial concentration of nitrogen and silicate combined, with a higher phosphate concentration resulted in low cell densities, but without high DA production. Inter-species effects were also observed in DA production, where P. australis represented the most toxigenic species of all. Intra-specific variations were only moderate, except for a recently isolated P. australis strain, suggesting the influence of time since isolation on the physiology and DA production of Pseudo-nitzschia species. Overall, the lack of strong interaction between environmental and genotypic factors showed that the various genotypes investigated did not extensively diverge in their ability to respond (in terms of DA production and cell densities) to contrasting nutrient supply
Physiological conditions favorable to domoic acid production by three Pseudo-nitzschia species
International audiencewenty-six species of the cosmopolitan genus Pseudo-nitzschia can produce domoic acid (DA), a neurotoxin responsible for amnesic shellfish poisoning (ASP). To improve knowledge on this issue, we studied the physiological conditions favorable to DA production and accumulation by three Pseudo-nitzschia species from French coastal waters: P. australis, P. pungens, and P. fraudulenta. They were grown in batch cultures under silicate limitation to characterize their physiological traits and calculate their DA production rates. Three strains were studied per species to consider intraspecific diversity and better characterize interspecific differences. DA production was not influenced by growth or silicate limitation in any of the three species. In contrast, silicate limitation in the stationary phase led to DA accumulation by inhibiting cell division, while DA production was still active. The maximum cellular DA (cDA) production rate was 2.95 pg cellâ1 dâ1 for P. australis, 0.07 pg cellâ1 dâ1 for P. pungens, and 0.03 pg cellâ1 dâ1 for P. fraudulenta. The physiological conditions favorable to cDA production and accumulation by P. australis and P. pungens differed. The three species presented similar growth rates, but P. australis had higher photosynthetic capacities that could partly explain its higher DA production potential. The cDA production and the net dissolved DA (dDA) production in the culture medium were favored by different growth conditions. The cDA production to net dDA production ratio was species specific, with P. pungens excreting proportionally more of its produced DA. These laboratory results on cultures imply that cDA production and net dDA production can occur during all phases of P. australis, P. pungens, and P. fraudulenta blooms. The interactions between the species composition of the bloom, the species-specific capacity for DA production, and the effect of silicate limitation â among other factors â on DA cell quotas drive the toxigenicity of Pseudo-nitzschia blooms
Inter and intra-specific growth and domoic acid production in relation to nutrient ratios and concentrations in Pseudo-nitzschia : phosphate an important factor
International audienc
Differential Influence of Life Cycle on Growth and Toxin Production of three Pseudoânitzschia Species (Bacillariophyceae)
International audienceWe used a multistrain approach to study the intraâ and interspecific variability of the growth rates of three Pseudoânitzschia species â P. australis, P. fraudulenta, and P. pungens â and of their domoic acid (DA) production. We carried out mating and batch experiments to investigate the respective effects of strain age and cell size, and thus the influence of their life cycle on the physiology of these species. The cell size â life cycle relationship was characteristic of each species. The influence of age and cell size on the intraspecific variability of growth rates suggests that these characteristics should be considered cautiously for the strains used in physiological studies on Pseudoânitzschia species. The results from all three species do not support the hypothesis of a decrease in DA production with time since isolation from natural populations. In P. australis, the cellular DA content was rather a function of cell size. More particularly, cells at the gametangia stage of their life cycle contained up to six times more DA than smaller or larger cells incapable of sexual reproduction. These findings reveal a link between P. australis life cycle and cell toxicity. This suggest that life cycle dynamics in Pseudoânitzschia natural populations may influence bloom toxicity
Interactions between Filter-Feeding Bivalves and Toxic Diatoms: Influence on the Feeding Behavior of Crassostrea gigas and Pecten maximus and on Toxin Production by Pseudo-nitzschia
International audienceAmong Pseudo-nitzschia species, some produce the neurotoxin domoic acid (DA), a source of serious health problems for marine organisms. Filter-feeding organismsâe.g., bivalves feeding on toxigenic Pseudo-nitzschia spp.âare the main vector of DA in humans. However, little is known about the interactions between bivalves and Pseudo-nitzschia. In this study, we examined the interactions between two juvenile bivalve speciesâoyster (Crassostrea gigas) and scallop (Pecten maximus)âand two toxic Pseudo-nitzschia speciesâP. australis and P. fraudulenta. We characterized the influence of (1) diet composition and the Pseudo-nitzschia DA content on the feeding rates of oysters and scallops, and (2) the presence of bivalves on Pseudo-nitzschia toxin production. Both bivalve species fed on P. australis and P. fraudulenta. However, they preferentially filtered the non-toxic Isochrysis galbana compared to Pseudo-nitzschia. The presence of the most toxic P. australis species resulted in a decreased clearance rate in C. gigas. The two bivalve species accumulated DA in their tissues (up to 0.35 Ă 10â3 and 5.1 Ă 10â3 ”g gâ1 for C. gigas and P. maximus, respectively). Most importantly, the presence of bivalves induced an increase in the cellular DA contents of both Pseudo-nitzschia species (up to 58-fold in P. fraudulenta in the presence of C. gigas). This is the first evidence of DA production by Pseudo-nitzschia species stimulated in the presence of filter-feeding bivalves. The results of this study highlight complex interactions that can influence toxin production by Pseudo-nitzschia and accumulation in bivalves. These results will help to better understand the biotic factors that drive DA production by Pseudo-nitzschia and bivalve contamination during Pseudo-nitzschia blooms
Inter- and Intra-Specific Transcriptional and Phenotypic Responses of Pseudo-nitzschia under Different Nutrient Conditions
International audienceUntangling the functional basis of divergence between closely related species is a step toward understanding species dynamics within communities at both the evolutionary and ecological scales. We investigated cellular (i.e., growth, domoic acid production, and nutrient consumption) and molecular (transcriptomic analyses) responses to varying nutrient concentrations across several strains belonging to three species of the toxic diatom genus Pseudo-nitzschia. Three main results were obtained. First, strains from the same species displayed similar transcriptomic, but not necessarily cellular, responses to the experimental conditions. It showed the importance of considering intraspecific diversity to investigate functional divergence between species. Second, a major exception to the first finding was a strain recently isolated from the natural environment and displaying contrasting gene expression patterns related to cell motility and domoic acid production. This result illustrated the profound modifications that may occur when transferring a cell from the natural to the in vitro environment and asks for future studies to better understand the influence of culture duration and life cycle on expression patterns. Third, transcriptomic responses were more similar between the two species displaying similar ecology in situ, irrespective of the genetic distance. This was especially true for molecular responses related to TCA cycle, photosynthesis, and nitrogen metabolism. However, transcripts related to phosphate uptake were variable between species. It highlighted the importance of considering both overall genetic distance and ecological divergence to explain functional divergence between species
Le projet ANR-COMANCHE 2010-STRA-010. Interactions écosystémiques et impacts anthropiques dans les populations de COquilles Saint-Jacques (Pecten maximus) de la MANCHE. Rapport scientifique final
The King scallop Pecten maximus constitutes the first landed species in terms of tonnage and the second or third one in terms of value for the French fisheries. More than 90% of these landings come from the English Channel indicating that its exploitation is essential to local fleets. The COMANCHE project (Ecosystem Interactions and anthropogenic impacts on King scallops populations in the English Channel) proposed to improve the knowledge of the scallop within the Channel, through an ecosystem-based approach for fisheries, appealing to a wide range of scientific disciplines (physics, chemistry, genetics, ecology, geostatistics, modeling, economics ....). Researches on the spatial location of scallop beds, connectivity by larval dispersal between beds, life history and recruitment variability, dynamics of plankton communities and determinism of toxic algal blooms, place of this bivalve in the food web, development of invasive species like the American slipper limpet, impact of dredging on seabed and also analysis of the main market supplies for this species, have been conducted. The aim of this project was to contribute to a sustainable development of a fishery, supported by government, local authorities and stakeholdersâ associations. According to the research activities, different conceptual approaches and tools, as numerical modeling methods, mapping, molecular biology techniques, use of genetic markers, laboratory cultivations of algae, etc ... have been used. For this, the COMANCHE project was built on the use of in situ data, but also on biological data time-series collected during scientific sea surveys conducted for more than 30 years by Ifremer or on data collected during the project. Data coming from the declarative flow (fisheries statistics) of fishing vessels have also been used. A map of the connectivity between the different scallop populations has been proposed, highlighting three major functional units (Bay of Seine, Normand-Breton Gulf and Southwestern coast of England). It was shown that the influence of the sea surface temperature and related climatic indexes could explain inter-annual fluctuations of the recruitment for the stock in the Bay of Seine, probably because of the role of temperature on the gametogenesis and the early life stages. Significant progresses have been made in understanding the emergence of harmful algal blooms which affect the scallop fisheries. Over 70 strains of 4 different species of Pseudo-nitzschia were isolated from samples taken in the Bay of Seine and were kept in culture. A biochip for the rapid identification of different species of Pseudo-Nitzschia was developed and could be used for the biomonitoring of toxic phytoplankton. An ecosystem model coupled with a biogeochemical model and a population dynamics model was developed for English Channel scallop populations. The economic analysis of fisheries raises the question of the adequacy of the management measures and the operation of the market in a global context of the King scallop production increase.La coquille Saint-Jacques europĂ©enne Pecten maximus constitue pour les pĂȘcheries françaises la premiĂšre espĂšce dĂ©barquĂ©e en tonnage, et la deuxiĂšme ou troisiĂšme en valeur. La Manche reprĂ©sente plus de 90% de ces dĂ©barquements : lâexploitation de cette espĂšce y est donc vitale pour les flottilles riveraines. Le projet COMANCHE (Interactions Ă©cosystĂ©miques et impacts anthropiques dans les populations de COquilles Saint-Jacques de la MANCHE) se proposait dâamĂ©liorer la connaissance de la coquille Saint-Jacques Ă lâĂ©chelle de lâensemble de la Manche, Ă travers une approche Ă©cosystĂ©mique des pĂȘcheries, en faisant appel Ă un large Ă©ventail de disciplines scientifiques (physique, chimie, gĂ©nĂ©tique, Ă©cologie, gĂ©ostatistique, modĂ©lisation, Ă©conomieâŠ.) : localisation spatiale des gisements, connectivitĂ© entre gisements par dĂ©rive larvaire, variabilitĂ© des traits de vie et du recrutement, dynamique des communautĂ©s planctoniques et dĂ©terminisme des efflorescences dâalgues toxiques, place de ce filtreur dans le rĂ©seau trophique, dĂ©veloppement des espĂšces invasives, dont la crĂ©pidule, impact de son exploitation sur le substrat et enfin analyse des principaux circuits dâapprovisionnement de cette espĂšce. Ce projet sâinscrit dans une logique de dĂ©veloppement durable dâune pĂȘcherie, soutenue par lâadministration, les collectivitĂ©s territoriales et les associations professionnelles. Selon les diffĂ©rentes actions de recherche entreprises, des mĂ©thodes numĂ©riques de modĂ©lisation, de la cartographie, des techniques de biologie molĂ©culaire, lâutilisation de marqueurs gĂ©nĂ©tiques, des mises en culture en laboratoire, etc ⊠ont Ă©tĂ© utilisĂ©es. Pour cela, le projet COMANCHE sâest appuyĂ© Ă la fois sur lâutilisation de donnĂ©es in situ, Ă partir de sĂ©ries chronologiques de donnĂ©es biologiques acquises soit lors de campagnes scientifiques Ă la mer menĂ©es depuis plus de 30 ans par lâIfremer, soit obtenues directement dans le cadre du projet, mais Ă©galement sur des donnĂ©es issues du flux dĂ©claratif (statistiques de pĂȘche) des navires de pĂȘches. Une carte de la connectivitĂ© entre les diffĂ©rents gisements a Ă©tĂ© proposĂ©e, mettant en Ă©vidence trois unitĂ©s fonctionnelles majeures (baie de Seine, golfe normano-breton et cĂŽtes sud-ouest de lâAngleterre). Par ailleurs, il a Ă©tĂ© montrĂ© que lâinfluence de la tempĂ©rature de surface et des grands cycles climatiques explique les fluctuations inter-annuelles du recrutement du stock de la baie de Seine, vraisemblablement en raison de lâeffet de la tempĂ©rature sur la gamĂ©togĂ©nĂšse et les premiers stades du cycle de vie. Des avancĂ©es significatives ont Ă©tĂ© rĂ©alisĂ©es pour la comprĂ©hension de lâapparition des phĂ©nomĂšnes algaux toxiques qui influencent grandement la stratĂ©gie dâexploitation de lâespĂšce : plus de 70 souches de 4 espĂšces de Pseudo-nitzschia diffĂ©rentes ont Ă©tĂ© identifiĂ©es Ă partir dâĂ©chantillons prĂ©levĂ©s en baie de Seine et ont Ă©tĂ© mises en culture. Une biopuce permettant lâidentification rapide des diffĂ©rentes espĂšces de Pseudo-Nitzschia a Ă©tĂ© mise au point et pourra constituer un outil majeur de surveillance de ces espĂšces toxiques. Un modĂšle dâĂ©cophysiologie individuel ainsi quâun modĂšle de dynamique des populations de lâespĂšce ont Ă©tĂ© mis au point. Ces modĂšles ont Ă©tĂ© couplĂ©s Ă un modĂšle dâĂ©cosystĂšme afin dâĂȘtre spatialisĂ©s Ă lâĂ©chelle de la Manche. Lâanalyse Ă©conomique des pĂȘcheries pose la question de lâadĂ©quation entre les mesures de gestion et le fonctionnement du marchĂ© dans un contexte global de progression importante de la production de coquilles en Manche