19 research outputs found

    Écologie du dinoflagellĂ© toxique Alexandrium tamarense dans l'estuaire maritime du Saint-Laurent : facteurs environnementaux affectant l'initiation et le dĂ©veloppement des efflorescences

    Get PDF
    L'accumulation de phycotoxines paralysantes chez les mollusques liĂ©e aux prolifĂ©rations estivales du dinoflagellĂ© toxique Alexandrium tamarense et les fermetures de secteurs coquilliers qui en rĂ©sultent sont des Ă©vĂšnements rĂ©currents dans l'estuaire maritime du Saint-Laurent (EMSL). Les facteurs qui contrĂŽlent l'initiation et le dĂ©veloppement des efflorescences d'A. tamarense dans l'EMSL sont toutefois Ă  ce jour mĂ©connus. De plus, le rĂŽle des interactions entre la biologie d'A. tamarense et les facteurs environnementaux propres Ă  L'EMSL, notamment son hydrodynamisme complexe, n'a pas encore Ă©tĂ© explorĂ©. L'objectif de cette Ă©tude est donc d'amĂ©liorer nos connaissances sur les facteurs environnementaux qui influencent la dynamique des efflorescences d'A . tamarense dans l'EMSL et d'intĂ©grer ces nouvelles connaissances dans un premier modĂšle couplĂ© physique-biologie de dĂ©veloppement des efflorescences d'A . tamarense pour l'EMSL. La premiĂšre partie de cette Ă©tude avait pour objectif de mesurer le taux de croissance d'A. tamarense lors de la marĂ©e rouge qui a eu lieu dans l'EMSL durant l'Ă©tĂ© 1998 et d' Ă©valuer les facteurs qui influencent les variations de croissance. Les taux de croissance, estimĂ©s lors d'incubations en conditions in situ de tempĂ©rature et de lumiĂšre, variaient entre 0 et 0.55 jouf l. Bien que l' on ait retrouvĂ© des cellules d'A . tamarense dans des eaux de salinitĂ©s trĂšs diffĂ©rentes (20.8 Ă  29.5), les plus fortes concentrations et surtout les taux de croissance positifs n 'ont Ă©tĂ© mesurĂ©s que dans les eaux de plus faible salinitĂ© (infĂ©rieure Ă  24.5). Dans ces conditions, les variations du taux de croissance semblaient contrĂŽlĂ©es par la disponibilitĂ© en phosphates. Les rĂ©sultats des expĂ©riences d' incubations nous ont amenĂ©s Ă  formuler deux hypothĂšses: (1) les cellules d'A. tamarense effectuent des migrations verticales nocturnes vers les couches profondes riches en nitrates de l'EMSL et (2) cette capacitĂ© migratoire des cellules d'A. tamarense entraĂźne une limitation en phosphates de leur croissance dans la couche de surface. Ces hypothĂšses ont Ă©tĂ© testĂ©es lors d'une mission menĂ©e dans l'EMSL durant l' Ă©tĂ© 2000. Une population d'A. tamarense a Ă©tĂ© suivie pendant 48 h Ă  l'aide d' une bouĂ©e dĂ©rivante afin d 'Ă©tudier les capacitĂ©s migratoires de cette espĂšce. Une sĂ©rie d'expĂ©riences d' incubations ont aussi permis d'Ă©valuer la condition nutritionnelle de la population d'A. tamarense au dĂ©but du suivi. Les rĂ©sultats de cette Ă©tude montrent que les cellules effectuent deux types de migrations ayant des buts diffĂ©rents: (1) des migrations nocturnes entre la couche euphotique et les couches profondes riches en nitrates permettant probablement aux cellules d' accumuler les rĂ©serves d 'azote nĂ©cessaires Ă  leur croissance, et (2) des migrations diurnes dans la couche euphotique leur permettant d'Ă©viter les fortes intensitĂ©s lumineuses potentiellement dommageables prĂšs de la surface. Les rĂ©sultats des expĂ©riences d'enrichissement supportent l' hypothĂšse issue de la premiĂšre partie de notre Ă©tude selon laquelle la capacitĂ© des cellules Ă  acquĂ©rir des nitrates en profondeur lors de migrations nocturnes entraĂźne une limitation de la croissance par les phosphates dans les eaux de surface. Ces rĂ©sultats, ainsi que ceux de la premiĂšre partie de cette Ă©tude nous amĂšnent Ă  aborder la problĂ©matique de la sensibilitĂ© des efflorescences de dinoflagellĂ©s au vent et Ă  la turbulence sous un angle nouveau, celui des migrations verticales. Cette sensibilitĂ© pourrait, en fait, ĂȘtre en partie liĂ©e Ă  un effet indirect de la turbulence via une inhibition des migrations verticales. Cette inhibition pourrait affecter les efflorescences d'A. tamarense dans l'EMSL en empĂȘchant les cellules de se concentrer durant le jour Ă  la profondeur correspondant Ă  leur intensitĂ© lumineuse optimale et d'avoir accĂšs aux couches profondes riches en nitrates la nuit. Dans la troisiĂšme partie de cette Ă©tude, nous avons dĂ©veloppĂ© un premier modĂšle couplĂ© physique-biologie des efflorescences d'A. tamarense dans l'EMSL, Ă  partir des observations recueillies prĂ©cĂ©demment. En bref, le modĂšle biologique prend en compte la distribution des kystes de dormance d'A . tamarense, la germination de ces kystes et la croissance des cellules d'A . tamarense limitĂ©e par la tempĂ©rature et la salinitĂ©. L'Ă©volution temporelle de l'efflorescence d'A. tamarense, la coĂŻncidence de cette efflorescence avec le panache d' eau douce des riviĂšres Manicouagan et aux-Outardes (M-O), ainsi que les variations temporelles dans les gradients nord-sud de concentrations d'A. tamarense gĂ©nĂ©rĂ©es par le modĂšle sont globalement en accord avec les observations rĂ©coltĂ©es lors de la marĂ©e rouge de 1998. Les simulations rĂ©vĂšlent que la coĂŻncidence entre les efflorescences d'A . tamarense et le panache d'eau douce M-O pourrait ĂȘtre, en partie, le rĂ©sultat d'une inoculation prĂ©fĂ©rentielle des eaux de surface le long de la cĂŽte nord par les cellules nouvellement germĂ©es, en particulier dans la rĂ©gion influencĂ©e par ce panache. De plus, nos rĂ©sultats suggĂšrent que l'Ă©volution spatio-temporelle de l'efflorescence est dominĂ©e par des cycles de rĂ©tention-advection des eaux de surface du panache M-O. Ces cycles, influencĂ©s par le rĂ©gime des vents, contrĂŽlent le transport des populations d'A. tamarense de la partie nord de l'EMSL oĂč ils se dĂ©veloppent vers la cĂŽte sud. La dynamique du panache d'eau douce M-O, et donc les vents, pourraient aussi affecter le succĂšs des efflorescences d'A. tamarense en influençant leur temps de rĂ©sidence dans l'estuaire. Par consĂ©quent, il est possible que des variations du rĂ©gime des vents puissent ĂȘtre en partie responsables de l'importante variabilitĂ© interannuelle des efflorescences d'A . tamarense dans l'EMSL

    Inter and intra-specific growth and domoic acid production in relation to nutrient ratios and concentrations in Pseudo-nitzschia : phosphate an important factor

    No full text
    The factors responsible for inducing the synthesis of toxins and responses from toxic phytoplankton blooms remain unclear. In this study we compare the influence of genotypic (at both the intra and interspecific levels) and environmental factors (nutrient concentration and ratio) on growth (in terms of cell densities) and domoic acid (DA) production in three Pseudo-nitzschia species: P. australis, P.pungens and P.fradulenta. A strong phosphate effect was detected. More precisely, a low initial concentration in phosphate, even at high initial nitrogen and silicate concentrations, induced the highest DA concentrations and the lowest cell densities in all strains/species studied. In contrast, a low initial concentration of nitrogen and silicate combined, with a higher phosphate concentration resulted in low cell densities, but without high DA production. Inter-species effects were also observed in DA production, where P. australis represented the most toxigenic species of all. Intra-specific variations were only moderate, except for a recently isolated P. australis strain, suggesting the influence of time since isolation on the physiology and DA production of Pseudo-nitzschia species. Overall, the lack of strong interaction between environmental and genotypic factors showed that the various genotypes investigated did not extensively diverge in their ability to respond (in terms of DA production and cell densities) to contrasting nutrient supply

    Physiological conditions favorable to domoic acid production by three Pseudo-nitzschia species

    No full text
    International audiencewenty-six species of the cosmopolitan genus Pseudo-nitzschia can produce domoic acid (DA), a neurotoxin responsible for amnesic shellfish poisoning (ASP). To improve knowledge on this issue, we studied the physiological conditions favorable to DA production and accumulation by three Pseudo-nitzschia species from French coastal waters: P. australis, P. pungens, and P. fraudulenta. They were grown in batch cultures under silicate limitation to characterize their physiological traits and calculate their DA production rates. Three strains were studied per species to consider intraspecific diversity and better characterize interspecific differences. DA production was not influenced by growth or silicate limitation in any of the three species. In contrast, silicate limitation in the stationary phase led to DA accumulation by inhibiting cell division, while DA production was still active. The maximum cellular DA (cDA) production rate was 2.95 pg cell−1 d−1 for P. australis, 0.07 pg cell−1 d−1 for P. pungens, and 0.03 pg cell−1 d−1 for P. fraudulenta. The physiological conditions favorable to cDA production and accumulation by P. australis and P. pungens differed. The three species presented similar growth rates, but P. australis had higher photosynthetic capacities that could partly explain its higher DA production potential. The cDA production and the net dissolved DA (dDA) production in the culture medium were favored by different growth conditions. The cDA production to net dDA production ratio was species specific, with P. pungens excreting proportionally more of its produced DA. These laboratory results on cultures imply that cDA production and net dDA production can occur during all phases of P. australis, P. pungens, and P. fraudulenta blooms. The interactions between the species composition of the bloom, the species-specific capacity for DA production, and the effect of silicate limitation – among other factors – on DA cell quotas drive the toxigenicity of Pseudo-nitzschia blooms

    Differential Influence of Life Cycle on Growth and Toxin Production of three Pseudo‐nitzschia Species (Bacillariophyceae)

    No full text
    International audienceWe used a multistrain approach to study the intra‐ and interspecific variability of the growth rates of three Pseudo‐nitzschia species – P. australis, P. fraudulenta, and P. pungens – and of their domoic acid (DA) production. We carried out mating and batch experiments to investigate the respective effects of strain age and cell size, and thus the influence of their life cycle on the physiology of these species. The cell size – life cycle relationship was characteristic of each species. The influence of age and cell size on the intraspecific variability of growth rates suggests that these characteristics should be considered cautiously for the strains used in physiological studies on Pseudo‐nitzschia species. The results from all three species do not support the hypothesis of a decrease in DA production with time since isolation from natural populations. In P. australis, the cellular DA content was rather a function of cell size. More particularly, cells at the gametangia stage of their life cycle contained up to six times more DA than smaller or larger cells incapable of sexual reproduction. These findings reveal a link between P. australis life cycle and cell toxicity. This suggest that life cycle dynamics in Pseudo‐nitzschia natural populations may influence bloom toxicity

    Interactions between Filter-Feeding Bivalves and Toxic Diatoms: Influence on the Feeding Behavior of Crassostrea gigas and Pecten maximus and on Toxin Production by Pseudo-nitzschia

    No full text
    International audienceAmong Pseudo-nitzschia species, some produce the neurotoxin domoic acid (DA), a source of serious health problems for marine organisms. Filter-feeding organisms—e.g., bivalves feeding on toxigenic Pseudo-nitzschia spp.—are the main vector of DA in humans. However, little is known about the interactions between bivalves and Pseudo-nitzschia. In this study, we examined the interactions between two juvenile bivalve species—oyster (Crassostrea gigas) and scallop (Pecten maximus)—and two toxic Pseudo-nitzschia species—P. australis and P. fraudulenta. We characterized the influence of (1) diet composition and the Pseudo-nitzschia DA content on the feeding rates of oysters and scallops, and (2) the presence of bivalves on Pseudo-nitzschia toxin production. Both bivalve species fed on P. australis and P. fraudulenta. However, they preferentially filtered the non-toxic Isochrysis galbana compared to Pseudo-nitzschia. The presence of the most toxic P. australis species resulted in a decreased clearance rate in C. gigas. The two bivalve species accumulated DA in their tissues (up to 0.35 × 10−3 and 5.1 × 10−3 ”g g−1 for C. gigas and P. maximus, respectively). Most importantly, the presence of bivalves induced an increase in the cellular DA contents of both Pseudo-nitzschia species (up to 58-fold in P. fraudulenta in the presence of C. gigas). This is the first evidence of DA production by Pseudo-nitzschia species stimulated in the presence of filter-feeding bivalves. The results of this study highlight complex interactions that can influence toxin production by Pseudo-nitzschia and accumulation in bivalves. These results will help to better understand the biotic factors that drive DA production by Pseudo-nitzschia and bivalve contamination during Pseudo-nitzschia blooms

    Inter- and Intra-Specific Transcriptional and Phenotypic Responses of Pseudo-nitzschia under Different Nutrient Conditions

    No full text
    International audienceUntangling the functional basis of divergence between closely related species is a step toward understanding species dynamics within communities at both the evolutionary and ecological scales. We investigated cellular (i.e., growth, domoic acid production, and nutrient consumption) and molecular (transcriptomic analyses) responses to varying nutrient concentrations across several strains belonging to three species of the toxic diatom genus Pseudo-nitzschia. Three main results were obtained. First, strains from the same species displayed similar transcriptomic, but not necessarily cellular, responses to the experimental conditions. It showed the importance of considering intraspecific diversity to investigate functional divergence between species. Second, a major exception to the first finding was a strain recently isolated from the natural environment and displaying contrasting gene expression patterns related to cell motility and domoic acid production. This result illustrated the profound modifications that may occur when transferring a cell from the natural to the in vitro environment and asks for future studies to better understand the influence of culture duration and life cycle on expression patterns. Third, transcriptomic responses were more similar between the two species displaying similar ecology in situ, irrespective of the genetic distance. This was especially true for molecular responses related to TCA cycle, photosynthesis, and nitrogen metabolism. However, transcripts related to phosphate uptake were variable between species. It highlighted the importance of considering both overall genetic distance and ecological divergence to explain functional divergence between species

    Le projet ANR-COMANCHE 2010-STRA-010. Interactions écosystémiques et impacts anthropiques dans les populations de COquilles Saint-Jacques (Pecten maximus) de la MANCHE. Rapport scientifique final

    No full text
    The King scallop Pecten maximus constitutes the first landed species in terms of tonnage and the second or third one in terms of value for the French fisheries. More than 90% of these landings come from the English Channel indicating that its exploitation is essential to local fleets. The COMANCHE project (Ecosystem Interactions and anthropogenic impacts on King scallops populations in the English Channel) proposed to improve the knowledge of the scallop within the Channel, through an ecosystem-based approach for fisheries, appealing to a wide range of scientific disciplines (physics, chemistry, genetics, ecology, geostatistics, modeling, economics ....). Researches on the spatial location of scallop beds, connectivity by larval dispersal between beds, life history and recruitment variability, dynamics of plankton communities and determinism of toxic algal blooms, place of this bivalve in the food web, development of invasive species like the American slipper limpet, impact of dredging on seabed and also analysis of the main market supplies for this species, have been conducted. The aim of this project was to contribute to a sustainable development of a fishery, supported by government, local authorities and stakeholders’ associations. According to the research activities, different conceptual approaches and tools, as numerical modeling methods, mapping, molecular biology techniques, use of genetic markers, laboratory cultivations of algae, etc ... have been used. For this, the COMANCHE project was built on the use of in situ data, but also on biological data time-series collected during scientific sea surveys conducted for more than 30 years by Ifremer or on data collected during the project. Data coming from the declarative flow (fisheries statistics) of fishing vessels have also been used. A map of the connectivity between the different scallop populations has been proposed, highlighting three major functional units (Bay of Seine, Normand-Breton Gulf and Southwestern coast of England). It was shown that the influence of the sea surface temperature and related climatic indexes could explain inter-annual fluctuations of the recruitment for the stock in the Bay of Seine, probably because of the role of temperature on the gametogenesis and the early life stages. Significant progresses have been made in understanding the emergence of harmful algal blooms which affect the scallop fisheries. Over 70 strains of 4 different species of Pseudo-nitzschia were isolated from samples taken in the Bay of Seine and were kept in culture. A biochip for the rapid identification of different species of Pseudo-Nitzschia was developed and could be used for the biomonitoring of toxic phytoplankton. An ecosystem model coupled with a biogeochemical model and a population dynamics model was developed for English Channel scallop populations. The economic analysis of fisheries raises the question of the adequacy of the management measures and the operation of the market in a global context of the King scallop production increase.La coquille Saint-Jacques europĂ©enne Pecten maximus constitue pour les pĂȘcheries françaises la premiĂšre espĂšce dĂ©barquĂ©e en tonnage, et la deuxiĂšme ou troisiĂšme en valeur. La Manche reprĂ©sente plus de 90% de ces dĂ©barquements : l’exploitation de cette espĂšce y est donc vitale pour les flottilles riveraines. Le projet COMANCHE (Interactions Ă©cosystĂ©miques et impacts anthropiques dans les populations de COquilles Saint-Jacques de la MANCHE) se proposait d’amĂ©liorer la connaissance de la coquille Saint-Jacques Ă  l’échelle de l’ensemble de la Manche, Ă  travers une approche Ă©cosystĂ©mique des pĂȘcheries, en faisant appel Ă  un large Ă©ventail de disciplines scientifiques (physique, chimie, gĂ©nĂ©tique, Ă©cologie, gĂ©ostatistique, modĂ©lisation, Ă©conomie
.) : localisation spatiale des gisements, connectivitĂ© entre gisements par dĂ©rive larvaire, variabilitĂ© des traits de vie et du recrutement, dynamique des communautĂ©s planctoniques et dĂ©terminisme des efflorescences d’algues toxiques, place de ce filtreur dans le rĂ©seau trophique, dĂ©veloppement des espĂšces invasives, dont la crĂ©pidule, impact de son exploitation sur le substrat et enfin analyse des principaux circuits d’approvisionnement de cette espĂšce. Ce projet s’inscrit dans une logique de dĂ©veloppement durable d’une pĂȘcherie, soutenue par l’administration, les collectivitĂ©s territoriales et les associations professionnelles. Selon les diffĂ©rentes actions de recherche entreprises, des mĂ©thodes numĂ©riques de modĂ©lisation, de la cartographie, des techniques de biologie molĂ©culaire, l’utilisation de marqueurs gĂ©nĂ©tiques, des mises en culture en laboratoire, etc 
 ont Ă©tĂ© utilisĂ©es. Pour cela, le projet COMANCHE s’est appuyĂ© Ă  la fois sur l’utilisation de donnĂ©es in situ, Ă  partir de sĂ©ries chronologiques de donnĂ©es biologiques acquises soit lors de campagnes scientifiques Ă  la mer menĂ©es depuis plus de 30 ans par l’Ifremer, soit obtenues directement dans le cadre du projet, mais Ă©galement sur des donnĂ©es issues du flux dĂ©claratif (statistiques de pĂȘche) des navires de pĂȘches. Une carte de la connectivitĂ© entre les diffĂ©rents gisements a Ă©tĂ© proposĂ©e, mettant en Ă©vidence trois unitĂ©s fonctionnelles majeures (baie de Seine, golfe normano-breton et cĂŽtes sud-ouest de l’Angleterre). Par ailleurs, il a Ă©tĂ© montrĂ© que l’influence de la tempĂ©rature de surface et des grands cycles climatiques explique les fluctuations inter-annuelles du recrutement du stock de la baie de Seine, vraisemblablement en raison de l’effet de la tempĂ©rature sur la gamĂ©togĂ©nĂšse et les premiers stades du cycle de vie. Des avancĂ©es significatives ont Ă©tĂ© rĂ©alisĂ©es pour la comprĂ©hension de l’apparition des phĂ©nomĂšnes algaux toxiques qui influencent grandement la stratĂ©gie d’exploitation de l’espĂšce : plus de 70 souches de 4 espĂšces de Pseudo-nitzschia diffĂ©rentes ont Ă©tĂ© identifiĂ©es Ă  partir d’échantillons prĂ©levĂ©s en baie de Seine et ont Ă©tĂ© mises en culture. Une biopuce permettant l’identification rapide des diffĂ©rentes espĂšces de Pseudo-Nitzschia a Ă©tĂ© mise au point et pourra constituer un outil majeur de surveillance de ces espĂšces toxiques. Un modĂšle d’écophysiologie individuel ainsi qu’un modĂšle de dynamique des populations de l’espĂšce ont Ă©tĂ© mis au point. Ces modĂšles ont Ă©tĂ© couplĂ©s Ă  un modĂšle d’écosystĂšme afin d’ĂȘtre spatialisĂ©s Ă  l’échelle de la Manche. L’analyse Ă©conomique des pĂȘcheries pose la question de l’adĂ©quation entre les mesures de gestion et le fonctionnement du marchĂ© dans un contexte global de progression importante de la production de coquilles en Manche
    corecore