997 research outputs found

    Field-free two-direction alignment alternation of linear molecules by elliptic laser pulses

    Full text link
    We show that a linear molecule subjected to a short specific elliptically polarized laser field yields postpulse revivals exhibiting alignment alternatively located along the orthogonal axis and the major axis of the ellipse. The effect is experimentally demonstrated by measuring the optical Kerr effect along two different axes. The conditions ensuring an optimal field-free alternation of high alignments along both directions are derived.Comment: 5 pages, 4 color figure

    Estimation non paramétrique des quantiles de crue par la méthode des noyaux

    Get PDF
    La détermination du débit de crue d'une période de retour donnée nécessite l'estimation de la distribution des crues annuelles. L'utilisation des distributions non paramétriques - comme alternative aux lois statistiques - est examinée dans cet ouvrage. Le principal défi dans l'estimation par la méthode des noyaux réside dans le calcul du paramÚtre qui détermine le degré de lissage de la densité non paramétrique. Nous avons comparé plusieurs méthodes et avons retenu la méthode plug-in et la méthode des moindres carrés avec validation croisée comme les plus prometteuses.Plusieurs conclusions intéressantes ont été tirées de cette étude. Entre autres, pour l'estimation des quantiles de crue, il semble préférable de considérer des estimateurs basés directement sur la fonction de distribution plutÎt que sur la fonction de densité. Une comparaison de la méthode plug-in à l'ajustement de trois lois statistiques a permis de conclure que la méthode des noyaux représente une alternative intéressante aux méthodes paramétriques traditionnelles.Traditional flood frequency analysis involves the fitting of a statistical distribution to observed annual peak flows. The choice of statistical distribution is crucial, since it can have significant impact on design flow estimates. Unfortunately, it is often difficult to determine in an objective way which distribution is the most appropriate.To avoid the inherent arbitrariness associated with the choice of distribution in parametric frequency analysis, one can employ a method based on nonparametric density estimation. Although potentially subject to larger standard error of quantile estimates, the use of nonparametric densities eliminates the need for selecting a particular distribution and the potential bias associated with a wrong choice.The kernel method is a conceptually simple approach, similar in nature to a smoothed histogram. The critical parameter in kernel estimation is the smoothing parameter that determines the degree of smoothing. Methods for estimating the smoothing parameter have already been compared in a number of statistical papers. The novelty of our work is the particular emphasis on quantile estimation, in particular the estimation of quantiles outside the range of observed data. The flood estimation problem is unique in this sense and has been the motivating factor for this study.Seven methods for estimating the smoothing parameter are compared in the paper. All methods are based on some goodness-of-fit measures. More specifically, we considered the least-squares cross-validation method, the maximum likelihood cross-validation method, Adamowski's (1985) method, a plug-in method developed by Altman and Leger (1995) and modified by the authors (Faucher et al., 2001), Breiman's goodness-of-fit criterion method (Breiman, 1977), the variable-kernel maximum likelihood method, and the variable-kernel least-squares cross-validation method.The estimation methods can be classified according to whether they are based on fixed or variable kernels, and whether they are based on the goodness-of-fit of the density function or cumulative distribution function.The quality of the different estimation methods was explored in a Monte Carlo study. Hundred (100) samples of sizes 10, 20, 50, and 100 were simulated from an LP3 distribution. The nonparametric estimation methods were then applied to each of the simulated samples, and quantiles with return period 10, 20, 50, 100, 200, and 1000 were estimated. Bias and root-mean square error of quantile estimates were the key figures used to compare methods. The results of the study can be summarized as follows :1. Comparison of kernels. The literature reports that the kernel choice is relatively unimportant compared to the choice of the smoothing parameter. To determine whether this assertion also holds in the case of the estimation of large quantiles outside the range of data, we compared six different kernel candidates. We found no major differences between the biweight, the Normal, the Epanechnikov, and the EV1 kernels. However, the rectangular and the Cauchy kernel should be avoided.2. Comparison of sample size. The quality of estimates, whether parametric or nonparametric, deteriorates as sample size decreases. To examine the degree of sensitivity to sample size, we compared estimates of the 200-year event obtained by assuming a GEV distribution and a nonparametric density estimated by maximum likelihood cross-validation. The main conclusion is that the root mean square error for the parametric model (GEV) is more sensitive to sample size than the nonparametric model. 3. Comparison of estimators of the smoothing parameter. Among the methods considered in the study, the plug-in method, developed by Altman and Leger (1995) and modified by the authors (Faucher et al. 2001), turned out to perform the best along with the least-squares cross-validation method which had a similar performance. Adamowski's method had to be excluded, because it consistently failed to converge. The methods based on variable kernels generally did not perform as well as the fixed kernel methods.4. Comparison of density-based and cumulative distribution-based methods. The only cumulative distribution-based method considered in the comparison study was the plug-in method. Adamowski's method is also based on the cumulative distribution function, but was rejected for the reasons mentioned above. Although the plug-in method did well in the comparison, it is not clear whether this can be attributed to the fact that it is based on estimation of the cumulative distribution function. However, one could hypothesize that when the objective is to estimate quantiles, a method that emphasizes the cumulative distribution function rather than the density should have certain advantages. 5. Comparison of parametric and nonparametric methods. Nonparametric methods were compared with conventional parametric methods. The LP3, the 2-parameter lognormal, and the GEV distributions were used to fit the simulated samples. It was found that nonparametric methods perform quite similarly to the parametric methods. This is a significant result, because data were generated from an LP3 distribution so one would intuitively expect the LP3 model to be superior which however was not the case. In actual applications, flood distributions are often irregular and in such cases nonparametric methods would likely be superior to parametric methods

    Cosmic ray feedback in the FIRE simulations: constraining cosmic ray propagation with GeV gamma ray emission

    Get PDF
    We present the implementation and the first results of cosmic ray (CR) feedback in the Feedback In Realistic Environments (FIRE) simulations. We investigate CR feedback in non-cosmological simulations of dwarf, sub-L⋆L\star starburst, and L⋆L\star galaxies with different propagation models, including advection, isotropic and anisotropic diffusion, and streaming along field lines with different transport coefficients. We simulate CR diffusion and streaming simultaneously in galaxies with high resolution, using a two moment method. We forward-model and compare to observations of Îł\gamma-ray emission from nearby and starburst galaxies. We reproduce the Îł\gamma-ray observations of dwarf and L⋆L\star galaxies with constant isotropic diffusion coefficient Îș∌3×1029 cm2 s−1\kappa \sim 3\times 10^{29}\,{\rm cm^{2}\,s^{-1}}. Advection-only and streaming-only models produce order-of-magnitude too large Îł\gamma-ray luminosities in dwarf and L⋆L\star galaxies. We show that in models that match the Îł\gamma-ray observations, most CRs escape low-gas-density galaxies (e.g.\ dwarfs) before significant collisional losses, while starburst galaxies are CR proton calorimeters. While adiabatic losses can be significant, they occur only after CRs escape galaxies, so they are only of secondary importance for Îł\gamma-ray emissivities. Models where CRs are ``trapped'' in the star-forming disk have lower star formation efficiency, but these models are ruled out by Îł\gamma-ray observations. For models with constant Îș\kappa that match the Îł\gamma-ray observations, CRs form extended halos with scale heights of several kpc to several tens of kpc.Comment: 31 pages, 26 figures, accepted for publication in MNRA

    Strongly Time-Variable Ultra-Violet Metal Line Emission from the Circum-Galactic Medium of High-Redshift Galaxies

    Get PDF
    We use cosmological simulations from the Feedback In Realistic Environments (FIRE) project, which implement a comprehensive set of stellar feedback processes, to study ultra-violet (UV) metal line emission from the circum-galactic medium of high-redshift (z=2-4) galaxies. Our simulations cover the halo mass range Mh ~ 2x10^11 - 8.5x10^12 Msun at z=2, representative of Lyman break galaxies. Of the transitions we analyze, the low-ionization C III (977 A) and Si III (1207 A) emission lines are the most luminous, with C IV (1548 A) and Si IV (1394 A) also showing interesting spatially-extended structures. The more massive halos are on average more UV-luminous. The UV metal line emission from galactic halos in our simulations arises primarily from collisionally ionized gas and is strongly time variable, with peak-to-trough variations of up to ~2 dex. The peaks of UV metal line luminosity correspond closely to massive and energetic mass outflow events, which follow bursts of star formation and inject sufficient energy into galactic halos to power the metal line emission. The strong time variability implies that even some relatively low-mass halos may be detectable. Conversely, flux-limited samples will be biased toward halos whose central galaxy has recently experienced a strong burst of star formation. Spatially-extended UV metal line emission around high-redshift galaxies should be detectable by current and upcoming integral field spectrographs such as the Multi Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope and Keck Cosmic Web Imager (KCWI).Comment: 16 pages, 8 figures, accepted for publication in MNRA

    Stability of Relativistic Matter with Magnetic Fields for Nuclear Charges up to the Critical Value

    Get PDF
    We give a proof of stability of relativistic matter with magnetic fields all the way up to the critical value of the nuclear charge Zα=2/πZ\alpha=2/\pi.Comment: LaTeX2e, 12 page

    A Direct Precision Measurement of the Intergalactic Lyman-alpha Opacity at 2<z<4.2

    Full text link
    We directly measure the evolution of the intergalactic Lya effective optical depth, tau_eff, over the redshift range 2<z<4.2 from a sample of 86 high-resolution, high-signal-to-noise quasar spectra obtained with the ESI and HIRES spectrographs on Keck, and with the MIKE spectrograph on Magellan. This represents an improvement over previous analyses of the Lya forest from high-resolution spectra in this redshift interval of a factor of two in the size of the data set alone. We pay particular attention to robust error estimation and extensively test for systematic effects. We find that our estimates of the quasar continuum levels in the Lya forest obtained by spline fitting are systematically biased low, with the magnitude of the bias increasing with redshift, but that this bias can be accounted for using mock spectra. The mean fractional error is <1% at z=2, 4% at z=3, and 12% at z=4. Previous measurements of tau_eff at z>~3 based on directly fitting the quasar continua in the Lya forest, which have generally neglected this effect, are therefore likely biased low. We provide estimates of the level of absorption arising from metals in the Lya forest based on both direct and statistical metal removal results in the literature, finding that this contribution is ~6-9% at z=3 and decreases monotonically with redshift. The high precision of our measurement, attaining 3% in redshift bins of width Delta z=0.2 around z=3, indicates significant departures from the best-fit power-law redshift evolution (tau_eff=0.0018(1+z)^3.92, when metals are left in), particularly near z=3.2. The observed downward departure is statistically consistent with a similar feature detected in a precision statistical measurement using Sloan Digital Sky Survey spectra by Bernardi and coworkers using an independent approach.Comment: 27 pages, including 18 figures, published in Ap

    New limits on the population of normal and millisecond pulsars in the Large and Small Magellanic Clouds

    Get PDF
    We model the potentially observable populations of normal and millisecond radio pulsars in the Large and Small Magellanic Clouds (LMC and SMC) where the known population currently stands at 19 normal radio pulsars. Taking into account the detection thresholds of previous surveys, and assuming optimal period and luminosity distributions based on studies of Galactic pulsars, we estimate there are (1.79 +/- 0.20) x 10^4 and (1.09 +/- 0.16) x 10^4 normal pulsars in the LMC and SMC respectively. When we attempt to correct for beaming effects, and the fraction of high-velocity pulsars which escape the clouds, we estimate birth rates in both the LMC and SMC to be comparable and in the range 0.5--1 pulsar per century. Although higher than estimates for the rate of core-collapse supernovae in the clouds, these pulsar birth rates are consistent with historical supernova observations in the past 300 yr. A substantial population of active radio pulsars (of order a few hundred thousand) have escaped the LMC and SMC and populate the local intergalactic medium. For the millisecond pulsar (MSP) population, the lack of any detections from current surveys leads to respective upper limits (at the 95% confidence level) of 15,000 for the LMC and 23,000 for the SMC. Several MSPs could be detected by a currently ongoing survey of the SMC with improved time and frequency resolution using the Parkes multibeam system. Giant-pulse emitting neutron stars could also be seen by this survey.Comment: 5 pages, 2 figures, accepted for publication in MNRAS Letter
    • 

    corecore