42 research outputs found

    A phonon scattering assisted injection and extraction based terahertz quantum cascade laser

    Full text link
    A novel lasing scheme for terahertz quantum cascade lasers, based on consecutive phonon-photon-phonon emissions per module, is proposed and experimentally demonstrated. The charge transport of the proposed structure is modeled using a rate equation formalism. An optimization code based on a genetic algorithm was developed to find a four-well design in the GaAs/Al0.25Ga0.75As\mathrm{GaAs/Al_{0.25}Ga_{0.75}As} material system that maximizes the product of population inversion and oscillator strength at 150 K. The fabricated devices using Au double-metal waveguides show lasing at 3.2 THz up to 138 K. The electrical characteristics display no sign of differential resistance drop at lasing threshold, which suggests - thanks to the rate equation model - a slow depopulation rate of the lower lasing state, a hypothesis confirmed by non-equilibrium Green's function calculations.Comment: 11 pages, 10 figure

    A phonon scattering assisted injection and extraction based terahertz quantum cascade laser

    Full text link
    A novel lasing scheme for terahertz quantum cascade lasers, based on consecutive phonon-photon-phonon emissions per module, is proposed and experimentally demonstrated. The charge transport of the proposed structure is modeled using a rate equation formalism. An optimization code based on a genetic algorithm was developed to find a four-well design in the GaAs/Al0.25Ga0.75As\mathrm{GaAs/Al_{0.25}Ga_{0.75}As} material system that maximizes the product of population inversion and oscillator strength at 150 K. The fabricated devices using Au double-metal waveguides show lasing at 3.2 THz up to 138 K. The electrical characteristics display no sign of differential resistance drop at lasing threshold, which suggests - thanks to the rate equation model - a slow depopulation rate of the lower lasing state, a hypothesis confirmed by non-equilibrium Green's function calculations.Comment: 11 pages, 10 figure

    Electrically switching transverse modes in high power THz quantum cascade lasers.

    Get PDF
    The design and fabrication of a high power THz quantum cascade laser (QCL), with electrically controllable transverse mode is presented. The switching of the beam pattern results in dynamic beam switching using a symmetric side current injection scheme. The angular-resolved L-I curves measurements, near-field and far-field patterns and angular-resolved lasing spectra are presented. The measurement results confirm that the quasi-TM(01) transverse mode lases first and dominates the lasing operation at lower current injection, while the quasi-TM(00) mode lases at a higher threshold current density and becomes dominant at high current injection. The near-field and far-field measurements confirm that the lasing THz beam is maneuvered by 25 degrees in emission angle, when the current density changes from 1.9 kA/cm(2) to 2.3 kA/cm(2). A two-dimension (2D) current and mode calculation provides a simple model to explain the behavior of each mode under different bias conditions

    Engineered far-fields of metal-metal terahertz quantum cascade lasers with integrated planar horn structures

    Get PDF
    The far-field emission profile of terahertz quantum cascade lasers (QCLs) in metal-metal waveguides is controlled in directionality and form through planar horn-type shape structures, whilst conserving a broad spectral response. The structures produce a gradual change in the high modal confinement of the waveguides and permit an improved far-field emission profile and resulting in a four-fold increase in the emitted output power. The two-dimensional far-field patterns are measured at 77 K and are agreement in with 3D modal simulations. The influence of parasitic high-order transverse modes is shown to be controlled by engineering the horn structure (ridge and horn widths), allowing only the fundamental mode to be coupled out

    In-plane surface plasmonics integrated with THz Quantum cascade lasers for high collimation

    Get PDF
    We report planar integration of tapered Terahertz (THz) quantum cascade lasers (QCLs) with spoof surface plasmon (SSP) structures. The SSP structure consists of one plasmonic coupler and periodically arranged scatters. The resulting surface-emitting THz beam is highly collimated with a beam divergence as narrow as 3.6°×9.7°. As the beam divergence is inverse proportional to the light emission area, this low divergence indicates a good waveguiding property of the SSP structure, while the low optical background of the beam implies a high coupling efficiency of the THz wave from the laser cavity to the SSPs. Since all the structures are in-plane, this scheme provides a promising platform where the well-established SP techniques can be employed to engineer the THz QCL beam with high flexibilities

    THz waveguide adapters for efficient radiation out-coupling from double metal THz QCLs

    Get PDF
    We report the development of on-chip optical components designed to improve the out-coupling of double-metal terahertz (THz) frequency quantum cascade lasers (QCLs). A visible reshaping of the optical beam is achieved, independent of the precise waveguide configuration, by direct incorporation of cyclic-olefin copolymer (COC) dielectric optical fibers onto the QCL facet. A major improvement is further achieved by incorporating a micromachined feed-horn waveguide, assembled around the THz QCL and integrated with a slit-coupler. In its first implementation, we obtain a ± 20° beam divergence, offering the potential for high-efficiency radiation coupling from a metal-metal waveguide into optical fibers

    Frequency and amplitude modulation of ultra-compact terahertz quantum cascade lasers using an integrated avalanche diode oscillator

    Get PDF
    Mode-locked comb sources operating at optical frequencies underpin applications ranging from spectroscopy and ultrafast physics, through to absolute frequency measurements and atomic clocks. Extending their operation into the terahertz frequency range would greatly benefit from the availability of compact semiconductor-based sources. However, the development of any compact mode-locked THz laser, which itself is inherently a frequency comb, has yet to be achieved without the use of an external stimulus. High-power, electrically pumped quantum cascade lasers (QCLs) have recently emerged as a promising solution, owing to their octave spanning bandwidths, the ability to achieve group-velocity dispersion compensation and the possibility of obtaining active mode-locking. Here, we propose an unprecedented compact architecture to induce both frequency and amplitude self-modulation in a THz QCL. By engineering a microwave avalanche oscillator into the laser cavity, which provides a 10 GHz self-modulation of the bias current and output power, we demonstrate multimode laser emission centered around 3 THz, with distinct multiple sidebands. The resulting microwave amplitude and frequency self-modulation of THz QCLs opens up intriguing perspectives, for engineering integrated self-mode-locked THz lasers, with impact in fields such as nano- and ultrafast photonics and optical metrology

    Design strategy for terahertz quantum dot cascade lasers

    Full text link
    The development of quantum dot cascade lasers has been proposed as a path to obtain terahertz semiconductor lasers that operate at room temperature. The expected benefit is due to the suppression of nonradiative electron-phonon scattering and reduced dephasing that accompanies discretization of the electronic energy spectrum. We present numerical modeling which predicts that simple scaling of conventional quantum well based designs to the quantum dot regime will likely fail due to electrical instability associated with high-field domain formation. A design strategy adapted for terahertz quantum dot cascade lasers is presented which avoids these problems. Counterintuitively, this involves the resonant depopulation of the laser's upper state with the LO-phonon energy. The strategy is tested theoretically using a density matrix model of transport and gain, which predicts sufficient gain for lasing at stable operating points. Finally, the effect of quantum dot size inhomogeneity on the optical lineshape is explored, suggesting that the design concept is robust to a moderate amount of statistical variation

    Planar integrated metasurfaces for highly-collimated terahertz quantum cascade lasers

    Get PDF
    We report planar integration of tapered terahertz (THz) frequency quantum cascade lasers (QCLs) with metasurface waveguides that are designed to be spoof surface plasmon (SSP) out-couplers by introducing periodically arranged SSP scatterers. The resulting surface-emitting THz beam profile is highly collimated with a divergence as narrow as ~4° × 10°, which indicates a good waveguiding property of the metasurface waveguide. In addition, the low background THz power implies a high coupling efficiency for the THz radiation from the laser cavity to the metasurface structure. Furthermore, since all the structures are in-plane, this scheme provides a promising platform where well-established surface plasmon/metasurface techniques can be employed to engineer the emitted beam of THz QCLs controllably and flexibly. More importantly, an integrated active THz photonic circuit for sensing and communication applications could be constructed by incorporating other optoelectronic devices such as Schottky diode THz mixers, and graphene modulators and photodetectors

    Monte Carlo modeling applied to studies of quantum cascade lasers

    Full text link
    corecore