83 research outputs found

    Leaching of PAHs from rubber modified asphalt pavements

    Get PDF
    The present study aimed to, for the first time, quantify the total content of 16 priority EPA PAHs in end-of-life tyre derived crumb rubber granulates and various manufactured rubberised asphalt mix designs. After identifying the availability of 16 EPA PAHs, the leaching behaviour of rubberised asphalt specimens, were evaluated using the Dynamic Surface Leaching Test (DSLT) based on CEN/TS 16637-2:2014 standard. This was prior to modelling the release mechanisms of PAHs by utilizing a mathematical diffusion-controlled leaching model. According to the results, the total content of 16 EPA PAHs in crumb rubber granulates ranged between 0.061 and 8.322 μg/g, which were associated with acenaphthene and pyrene, respectively. The total content of PAHs in rubberised asphalt specimens varied between 0.019 and 4.992 μg/g depending on the volume of crumb rubber granulates in the asphalt concrete mix design, and type of binder. Results of the leaching experiments revealed that the highest leached PAHs were benzo[b]fluoranthene, benzo[k]fluoranthene and naphthalene with a 64-days cumulative release per specimen surface area > 1 μg/m2. Acenaphthylene, fluoranthene, fluorene and indeno[1,2,3-c,d]pyrene were released in cumulative concentrations between 0.1 and 1 μg/m2. The PAHs with a cumulative release potential below 0.1 μg/m2 during DSLT were benzo[a]anthracene, benzo[a]pyrene, benzo[g,h,i]perylene and chrysene. The diffusion coefficients, which were calculated by mathematical modelling of DSLT data, revealed that the leaching process of 16 EPA PAHs from surface of rubberised asphalt concrete mix designs fitted all the criteria set by the NEN 7345 standard for diffusion-controlled leaching during all stages of leaching experiments

    The biosorption of mercury by permeable pavement biofilms in stormwater attenuation

    Get PDF
    This study reports on the evaluation of the equilibrium, thermodynamics and kinetics of mercury (II) biosorption using a living biofilm, developed on a nonwoven polypropylene and polyethylene geotextile, typically used within the structure of Sustainable Drainage System (SuDS) devices. Batch biosorption assays were carried out with variables such as pH, initial concentrations, contact time, temperature and biofilm incubation time. Langmuir, Freundlich and Dubinin Radushkevich (D-R) models were applied to the equilibrium data which revealed the maximum biosorption capacities and efficiencies at pH 5.5 with a contact time of 120 min at 25 °C. With 20 mg L-1 added Hg (II), living biofilm samples with incubation times of 1, 7, 14, 21 and 28 days, biosorption values were 101.31 (55.72%), 24.41 (67.12%), 16.81 (61.37%), 9.70 (62.57%) and 13.34 (65.38%) mg g-1, respectively. Free mean biosorption energy from the D-R model was between 2.24 and 2.36 kJ mol-1 for all biofilm development incubation times, that revealed the physical biosorption mechanism for Hg(II). The thermodynamic studies showed that the Hg(II) biosorption of living biofilm was thermodynamically feasible and had a spontaneous and exothermic nature. Kinetic parameters revealed that Hg(II) biosorption onto living biofilm had a good correlation with a pseudo second-order kinetic model. FTIR spectra after biosorption suggested that amine, hydroxyl and carboxyl groups were the main functional groups available and responsible for Hg(II) biosorption onto living biofilm. Experimental data suggested that a living biofilm developed on a nonwoven polypropylene and polyethylene geotextile can be efficient in the removal of mercury ions from contaminated urban and industrial runoff

    Genetic Engineering Algorithm (GEA): An Efficient Metaheuristic Algorithm for Solving Combinatorial Optimization Problems

    Full text link
    Genetic Algorithms (GAs) are known for their efficiency in solving combinatorial optimization problems, thanks to their ability to explore diverse solution spaces, handle various representations, exploit parallelism, preserve good solutions, adapt to changing dynamics, handle combinatorial diversity, and provide heuristic search. However, limitations such as premature convergence, lack of problem-specific knowledge, and randomness of crossover and mutation operators make GAs generally inefficient in finding an optimal solution. To address these limitations, this paper proposes a new metaheuristic algorithm called the Genetic Engineering Algorithm (GEA) that draws inspiration from genetic engineering concepts. GEA redesigns the traditional GA while incorporating new search methods to isolate, purify, insert, and express new genes based on existing ones, leading to the emergence of desired traits and the production of specific chromosomes based on the selected genes. Comparative evaluations against state-of-the-art algorithms on benchmark instances demonstrate the superior performance of GEA, showcasing its potential as an innovative and efficient solution for combinatorial optimization problems.Comment: Accepted in Data Analytics and Management in Data Intensive Domains (DAMDID/RCDL 2023

    Up-Regulation of Tmevpg1 and Rmrp LncRNA Levels in Splenocytes and Brain of Mouse with Experimental Autoimmune Encephalomyelitis

    Get PDF
    Background: Two long noncoding (lnc) RNAs, which have been recognized as Tmevpg1/Ifng-AS1/NeST and Rmrp play indispensable roles in the differentiation of TH1 and TH17, respectively. The aim of the present scientific study was to analyze the expression levels of the aforementioned lncRNAs in experimental autoimmune encephalomyelitis (EAE) as an animal model for multiple sclerosis (MS).Materials and Methods: Initially, EAE was induced in C57BL/6 mice via immunization by using MOG peptide. The leukocyte infiltration rate and demyelination of neuronal axons were determined. Secondly, the expression levels of Tmevpg1, Rmrp, Tbx21, and Rorc were analyzed in the cultured splenocytes and brain lysates, by using Real-Time PCR assay; eventually, the levels of interferon-gamma and interleukin-17 evaluated by ELISA.Results: Gene expression analysis revealed that Rorc expression in the splenocytes of EAE mice in comparison to the controls was elevated; however, Tbx21 expression did not show any significant difference. Tmevpg1 and Rmrp levels increased in the splenocytes of EAE mice (4.48 times and 39.70 times, respectively, p = 0.0001). Besides, in the brain lysate, the entire genes that have been mentioned were higher than the controls (Tmevpg1: 3.35 times p = 0.02 and Rmrp 11.21 times, p = 0.0001).Conclusion: The marked up-regulation in Tmevpg1 and Rmrp transcripts suggested the essential roles of lncRNAs in the pathogenesis of EAE and multiple sclerosis indeed. Further investigations are necessary to evaluate the values of these lncRNAs as the target for the therapy or molecular marker for disease monitoring

    Low-power density of 950 MHz radiation does not affect long-term potentiation in rat dentate gyrus

    Get PDF
    Introduction: Over the last decade, exposure to non-ionizing electromagnetic waves due to base station antenna has increased. This in vivo study was planned for evaluating the effects of whole-body exposure to 950 MHz field of GSM mobile phone system on rat dentate gyrus long-term potentiation. Materials and methods: 24 naive male Wistar rats (3 month old, 225±25 g) were randomly divided in the three groups (sham-exposed, GSM and continuous field exposed). The exposure program was planned for 10 sessions at 3 days. Animals were exposed to electromagnetic field for 45 minutes in a circular plastic chamber (mean power density=0.835 mW/cm2). Immediately after end exposure, anesthesia was induced for long term potentiation (LTP) induction. Field potentials were recorded and analyzed using the population spike amplitude and EPSP slope for 60-min. Results; There were no significant differences in population spike amplitude, EPSP slope and EPSP slope maintenance among the three groups. Conclusion: This study provides no evidence indicating that long-term potentiation can be affected by the whole-body exposure to low-power density of 950 MHz field of GSM mobile phone System

    Hippocampal asymmetry: differences in the left and right hippocampus proteome in the rat model of temporal lobe epilepsy

    Get PDF
    © 2016 Elsevier B.V.The hippocampus is a complex brain structure and undergoes severe sclerosis and gliosis in temporal lobe epilepsy (TLE) as the most common type of epilepsy. The key features of the TLE may be reported in chronic animal models of epilepsy, such as pilocarpine model. Therefore, the current study was conducted in a rat pilocarpine model of acquired epilepsy. Two-dimensional gel electrophoresis based proteomic technique was used to compare the proteome map of the left and right hippocampus in both control and epileptic rats. Generally, 95 differentially expressed spots out of 1300 spots were identified in the hippocampus proteome using MALDI-TOF-TOF/MS. Within identified proteins, some showed asymmetric expression related to the mechanisms underlying TLE imposed by pilocarpine. Assessment of lateralization at the molecular level demonstrated that expression of proteins involved in dopamine synthesis was significantly more in the right hippocampus than the left one. In the epileptic model, reduction in dopamine pathway proteins was accompanied by an increase in the expression of proteins involved in polyamine synthesis, referring to a new regulating mechanism. Our results revealed changes in the laterality of protein expression due to pilocarpine-induced status epilepticus that could present some new proteins as potential candidates for antiepileptic drug design. Biological significance In the current study, two-dimensional gel electrophoresis (2-DE) based proteomic technique was used to profile changes in the left and right hippocampus proteome after pilocarpine induced status epilepticus. Spots of proteome maps for two hemispheres were excised and identified with MALDI-TOF-TOF/MS. Analysis of proteome map of the left and right hippocampus revealed a lateralization at the molecular level, in which the expression of proteins involved in dopamine synthesis and release were significantly more in right hippocampi than the left ones in the normal rats. Also, the expression of proteins involved in polyamine synthesis significantly increased in epileptic hippocampus (considerably higher in right hippocampi), whilst the proteins which included in dopamine pathways were decreased. Our results revealed changes in the laterality of protein expression due to pilocarpine-induced status epilepticus that could present some new proteins as potential candidates for antiepileptic drug design

    Using sterile insect technique against Carob moth, Ectomyelois ceratoniae (Zeller) (Lep.: Pyralidae), in Yazd province, Iran

    Get PDF
    Carob moth, Ectomyelois ceratoniae (Zeller) (Lep.: Pyralidae), is the most important pest of pomegranate fruit in Iran where the cryptic activity of its larva makes the application of insecticides practically impossible. In this research, we evaluated the viability of the sterile insect technique against the carob moth in two isolated regions in Yazd province (Aqda and Mehriz). The mass rearing of the pest was performed in clean rooms on artificial diet under environmental conditions, 29±1 ºC and 75±5 %RH applying 165 Gy gamma ray as sterilizing doze. The sterile insects were released periodically in Aqda orchards (45 hectares) and in Chah Sheida (12 hectares) in Mehriz between March and November 2015. The infestation rate of carob moth in Aqda and Mehriz significantly reduced, in both target regions and control areas, by 12.27% and 44.02%, as well as 12.06% and 50.11%, for Aqda and Mehriz, respectively. It was concluded that periodical release of sterile carob moths can effectively lower the density of pest population and its economic loss on the harvest
    corecore