10 research outputs found

    Ion Channels and Transporters in Muscle Cell Differentiation

    Get PDF
    Investigations on ion channels in muscle tissues have mainly focused on physiological muscle function and related disorders, but emerging evidence supports a critical role of ion channels and transporters in developmental processes, such as controlling the myogenic commitment of stem cells. In this review, we provide an overview of ion channels and transporters that influence skeletal muscle myoblast differentiation, cardiac differentiation from pluripotent stem cells, as well as vascular smooth muscle cell differentiation. We highlight examples of model organisms or patients with mutations in ion channels. Furthermore, a potential underlying molecular mechanism involving hyperpolarization of the resting membrane potential and a series of calcium signaling is discussed

    SHANK3 conformation regulates direct actin binding and crosstalk with Rap1 signaling

    Get PDF
    Actin-rich cellular protrusions direct versatile biological processes from cancer cell invasion to dendritic spine development. The stability, morphology, and specific biological functions of these protrusions are regulated by crosstalk between three main signaling axes: integrins, actin regulators, and small guanosine triphosphatases (GTPases). SHANK3 is a multifunctional scaffold protein, interacting with several actin -binding proteins and a well-established autism risk gene. Recently, SHANK3 was demonstrated to sequester integrin-activating small GTPases Rap1 and R-Ras to inhibit integrin activity via its Shank/ProSAP N-terminal (SPN) domain. Here, we demonstrate that, in addition to scaffolding actin regulators and actin-binding proteins, SHANK3 interacts directly with actin through its SPN domain. Molecular simulations and targeted mutagenesis of the SPN-ankyrin repeat region (ARR) interface reveal that actin binding is inhibited by an intramolecular closed conformation of SHANK3, where the adjacent ARR domain covers the actin-binding interface of the SPN domain. Actin and Rap1 compete with each other for binding to SHANK3, and mutation of SHANK3, resulting in reduced actin binding, augments inhibition of Rap1-mediated integrin activity. This dynamic crosstalk has functional implications for cell morphology and integrin activity in cancer cells. In addition, SHANK3-actin interaction regulates dendritic spine morphology in neurons and autism-linked phenotypes in vivo.Peer reviewe

    SHANK3 conformation regulates direct actin binding and crosstalk with Rap1 signaling

    Get PDF
    Actin-rich cellular protrusions direct versatile biological processes from cancer cell invasion to dendritic spine development. The stability, morphology, and specific biological functions of these protrusions are regulated by crosstalk between three main signaling axes: integrins, actin regulators, and small guanosine triphosphatases (GTPases). SHANK3 is a multifunctional scaffold protein, interacting with several actin-binding proteins and a well-established autism risk gene. Recently, SHANK3 was demonstrated to sequester integrin-activating small GTPases Rap1 and R-Ras to inhibit integrin activity via its Shank/ProSAP N-terminal (SPN) domain. Here, we demonstrate that, in addition to scaffolding actin regulators and actin-binding proteins, SHANK3 interacts directly with actin through its SPN domain. Molecular simulations and targeted mutagenesis of the SPN-ankyrin repeat region (ARR) interface reveal that actin binding is inhibited by an intramolecular closed conformation of SHANK3, where the adjacent ARR domain covers the actin-binding interface of the SPN domain. Actin and Rap1 compete with each other for binding to SHANK3, and mutation of SHANK3, resulting in reduced actin binding, augments inhibition of Rap1-mediated integrin activity. This dynamic crosstalk has functional implications for cell morphology and integrin activity in cancer cells. In addition, SHANK3-actin interaction regulates dendritic spine morphology in neurons and autism-linked phenotypes in vivo

    SHANK proteins limit integrin activation by directly interacting with Rap1 and R-Ras

    Get PDF
    SHANK3, a synaptic scaffold protein and actin regulator, is widely expressed outside of the central nervous system with predominantly unknown function. Solving the structure of the SHANK3 N-terminal region revealed that the SPN domain is an unexpected Ras-association domain with high affinity for GTP-bound Ras and Rap G-proteins. The role of Rap1 in integrin activation is well established but the mechanisms to antagonize it remain largely unknown. Here, we show that SHANK1 and SHANK3 act as integrin activation inhibitors by sequestering active Rap1 and R-Ras via the SPN domain and thus limiting their bioavailability at the plasma membrane. Consistently, SHANK3 silencing triggers increased plasma membrane Rap1 activity, cell spreading, migration and invasion. Autism-related mutations within the SHANK3 SPN domain (R12C and L68P) disrupt G-protein interaction and fail to counteract integrin activation along the Rap1-RIAM-talin axis in cancer cells and neurons. Altogether, we establish SHANKs as critical regulators of G-protein signalling and integrin-dependent processes

    Targeting of δ-catenin to postsynaptic sites through interaction with the Shank3 N-terminus

    No full text
    Background!#!Neurodevelopmental disorders such as autism spectrum disorder (ASD) may be caused by alterations in genes encoding proteins that are involved in synapse formation and function. This includes scaffold proteins such as Shank3, and synaptic adhesion proteins such as Neurexins or Neuroligins. An important question is whether the products of individual risk genes cooperate functionally (exemplified in the interaction of Neurexin with Neuroligin isoforms). This might suggest a common pathway in pathogenesis. For the SHANK3 gene, heterozygous loss of function, as well as missense mutations have been observed in ASD cases. Several missense mutations affect the N-terminal part of Shank3 which contains the highly conserved Shank/ProSAP N-terminal (SPN) and Ankyrin repeat (Ank) domains. The role of these domains and the relevance of these mutations for synaptic function of Shank3 are widely unknown.!##!Methods!#!We used purification from a synaptic protein fraction, as well as a variety of biochemical and cell biological approaches to identify proteins which associate with the Shank3 N-terminus at postsynaptic sites.!##!Results!#!We report here that δ-catenin, which is encoded by CTNND2, an autism candidate gene, directly interacts with the Ank domain of Shank3 at postsynaptic sites through its Armadillo-repeat domain. The interaction is not affected by well-known posttranslational modifications of δ-catenin, i.e. by phosphorylation or palmitoylation. However, an ASD-associated mutation in the SPN domain of Shank3, L68P, significantly increases the interaction of Shank3 with δ-catenin. By analysis of postsynaptic fractions from mice, we show that the lack of SPN-Ank containing, large isoforms of Shank3 results in the loss of postsynaptic δ-catenin. Further, expression of Shank3 variants containing the N-terminal domains in primary cultured neurons significantly increased the presence of coexpressed δ-catenin at postsynaptic sites.!##!Limitations!#!Work in model organisms such as mice, and in primary cultured neurons may not reproduce faithfully the situation in human brain neurons. Work in primary cultured neurons was also hampered by lack of a specific antibody for endogenous δ-catenin.!##!Conclusions!#!Our data show that the interaction between Shank3 N-terminus and δ-catenin is required for the postsynaptic targeting of δ-catenin. Failure of proper targeting of δ-catenin to postsynaptic sites may contribute to the pathogenesis of autism spectrum disorder

    Autism-associated SHANK3 missense point mutations impact conformational fluctuations and protein turnover at synapses

    No full text
    Members of the SH3- and ankyrin repeat (SHANK) protein family are considered as master scaffolds of the postsynaptic density of glutamatergic synapses. Several missense mutations within the canonical SHANK3 isoform have been proposed as causative for the development of autism spectrum disorders (ASDs). However, there is a surprising paucity of data linking missense mutation-induced changes in protein structure and dynamics to the occurrence of ASD-related synaptic phenotypes. In this proof-of-principle study, we focus on two ASD-associated point mutations, both located within the same domain of SHANK3 and demonstrate that both mutant proteins indeed show distinct changes in secondary and tertiary structure as well as higher conformational fluctuations. Local and distal structural disturbances result in altered synaptic targeting and changes of protein turnover at synaptic sites in rat primary hippocampal neurons

    Mutations affecting the N-terminal domains of SHANK3 point to different pathomechanisms in neurodevelopmental disorders

    No full text
    Shank proteins are major scaffolds of the postsynaptic density of excitatory synapses. Mutations in SHANK genes are associated with autism and intellectual disability. The effects of missense mutations on Shank3 function, and therefore the pathomechanisms are unclear. Several missense mutations in SHANK3 affect the N-terminal region, consisting of the Shank/ProSAP N-terminal (SPN) domain and a set of Ankyrin (Ank) repeats. Here we identify a novel SHANK3 missense mutation (p.L270M) in the Ankyrin repeats in patients with an ADHD-like phenotype. We functionally analysed this and a series of other mutations, using biochemical and biophysical techniques. We observe two major effects: (1) a loss of binding to δ-catenin (e.g. in the p.L270M variant), and (2) interference with the intramolecular interaction between N-terminal SPN domain and the Ank repeats. This also interferes with binding to the α-subunit of the calcium-/calmodulin dependent kinase II (αCaMKII), and appears to be associated with a more severe neurodevelopmental pathology

    Structural deficits in key domains of Shank2 lead to alterations in postsynaptic nanoclusters and to a neurodevelopmental disorder in humans

    No full text
    Postsynaptic scaffold proteins such as Shank, PSD-95, Homer and SAPAP/GKAP family members establish the postsynaptic density of glutamatergic synapses through a dense network of molecular interactions. Mutations in SHANK genes are associated with neurodevelopmental disorders including autism and intellectual disability. However, no SHANK missense mutations have been described which interfere with the key functions of Shank proteins believed to be central for synapse formation, such as GKAP binding via the PDZ domain, or Zn2+-dependent multimerization of the SAM domain. We identify two individuals with a neurodevelopmental disorder carrying de novo missense mutations in SHANK2. The p.G643R variant distorts the binding pocket for GKAP in the Shank2 PDZ domain and prevents interaction with Thr(−2) in the canonical PDZ ligand motif of GKAP. The p.L1800W variant severely delays the kinetics of Zn2+-dependent polymerization of the Shank2-SAM domain. Structural analysis shows that Trp1800 dislodges one histidine crucial for Zn2+ binding. The resulting conformational changes block the stacking of helical polymers of SAM domains into sheets through side-by-side contacts, which is a hallmark of Shank proteins, thereby disrupting the highly cooperative assembly process induced by Zn2+. Both variants reduce the postsynaptic targeting of Shank2 in primary cultured neurons and alter glutamatergic synaptic transmission. Super-resolution microscopy shows that both mutants interfere with the formation of postsynaptic nanoclusters. Our data indicate that both the PDZ- and the SAM-mediated interactions of Shank2 contribute to the compaction of postsynaptic protein complexes into nanoclusters, and that deficiencies in this process interfere with normal brain development in humans

    Germline AGO2 mutations impair RNA interference and human neurological development

    Get PDF
    ARGONAUTE-2 and associated miRNAs form the RNA-induced silencing complex (RISC), which targets mRNAs for translational silencing and degradation as part of the RNA interference pathway. Despite the essential nature of this process for cellular function, there is little information on the role of RISC components in human development and organ function. We identify 13 heterozygous mutations in AGO2 in 21 patients affected by disturbances in neurological development. Each of the identified single amino acid mutations result in impaired shRNA-mediated silencing. We observe either impaired RISC formation or increased binding of AGO2 to mRNA targets as mutation specific functional consequences. The latter is supported by decreased phosphorylation of a C-terminal serine cluster involved in mRNA target release, increased formation of dendritic P-bodies in neurons and global transcriptome alterations in patient-derived primary fibroblasts. Our data emphasize the importance of gene expression regulation through the dynamic AGO2-RNA association for human neuronal development. AGO2 binds to miRNAs to repress expression of cognate target mRNAs. Here the authors report that heterozygous AGO2 mutations result in defects in neurological development and impair RNA interference
    corecore