97 research outputs found

    Cost-Effective Control of Infectious Disease Outbreaks Accounting for Societal Reaction

    Get PDF
    Background Studies of cost-effective disease prevention have typically focused on the tradeoff between the cost of disease transmission and the cost of applying control measures. We present a novel approach that also accounts for the cost of social disruptions resulting from the spread of disease. These disruptions, which we call social response, can include heightened anxiety, strain on healthcare infrastructure, economic losses, or violence. Methodology The spread of disease and social response are simulated under several different intervention strategies. The modeled social response depends upon the perceived risk of the disease, the extent of disease spread, and the media involvement. Using Monte Carlo simulation, we estimate the total number of infections and total social response for each strategy. We then identify the strategy that minimizes the expected total cost of the disease, which includes the cost of the disease itself, the cost of control measures, and the cost of social response. Conclusions The model-based simulations suggest that the least-cost disease control strategy depends upon the perceived risk of the disease, as well as media intervention. The most cost-effective solution for diseases with low perceived risk was to implement moderate control measures. For diseases with higher perceived severity, such as SARS or Ebola, the most cost-effective strategy shifted toward intervening earlier in the outbreak, with greater resources. When intervention elicited increased media involvement, it remained important to control high severity diseases quickly. For moderate severity diseases, however, it became most cost-effective to implement no intervention and allow the disease to run its course. Our simulation results imply that, when diseases are perceived as severe, the costs of social response have a significant influence on selecting the most cost-effective strategy.United States. Defense Threat Reduction Agency (Contract HDTRA1-12-C-0061

    Geometric Framework for Evaluating Rare Variant Tests of Association

    Get PDF
    The wave of next-generation sequencing data has arrived. However, many questions still remain about how to best analyze sequence data, particularly the contribution of rare genetic variants to human disease. Numerous statistical methods have been proposed to aggregate association signals across multiple rare variant sites in an effort to increase statistical power; however, the precise relation between the tests is often not well understood. We present a geometric representation for rare variant data in which rare allele counts in case and control samples are treated as vectors in Euclidean space. The geometric framework facilitates a rigorous classification of existing rare variant tests into two broad categories: tests for a difference in the lengths of the case and control vectors, and joint tests for a difference in either the lengths or angles of the two vectors. We demonstrate that genetic architecture of a trait, including the number and frequency of risk alleles, directly relates to the behavior of the length and joint tests. Hence, the geometric framework allows prediction of which tests will perform best under different disease models. Furthermore, the structure of the geometric framework immediately suggests additional classes and types of rare variant tests. We consider two general classes of tests which show robustness to noncausal and protective variants. The geometric framework introduces a novel and unique method to assess current rare variant methodology and provides guidelines for both applied and theoretical researchers

    Assessing the Impact of Differential Genotyping Errors on Rare Variant Tests of Association

    Get PDF
    Genotyping errors are well-known to impact the power and type I error rate in single marker tests of association. Genotyping errors that happen according to the same process in cases and controls are known as non-differential genotyping errors, whereas genotyping errors that occur with different processes in the cases and controls are known as differential genotype errors. For single marker tests, non-differential genotyping errors reduce power, while differential genotyping errors increase the type I error rate. However, little is known about the behavior of the new generation of rare variant tests of association in the presence of genotyping errors. In this manuscript we use a comprehensive simulation study to explore the effects of numerous factors on the type I error rate of rare variant tests of association in the presence of differential genotyping error. We find that increased sample size, decreased minor allele frequency, and an increased number of single nucleotide variants (SNVs) included in the test all increase the type I error rate in the presence of differential genotyping errors. We also find that the greater the relative difference in case-control genotyping error rates the larger the type I error rate. Lastly, as is the case for single marker tests, genotyping errors classifying the common homozygote as the heterozygote inflate the type I error rate significantly more than errors classifying the heterozygote as the common homozygote. In general, our findings are in line with results from single marker tests. To ensure that type I error inflation does not occur when analyzing next-generation sequencing data careful consideration of study design (e.g. use of randomization), caution in meta-analysis and using publicly available controls, and the use of standard quality control metrics is critical

    Assay platform for clinically relevant metallo-beta-lactamases

    Get PDF
    Metallo-β-lactamases (MBLs) are a growing threat to the use of almost all clinically used β-lactam antibiotics. The identification of broad-spectrum MBL inhibitors is hampered by the lack of a suitable screening platform, consisting of appropriate substrates and a set of clinically relevant MBLs. We report procedures for the preparation of a set of clinically relevant metallo-β-lactamases (i.e., NDM-1 (New Delhi MBL), IMP-1 (Imipenemase), SPM-1 (São Paulo MBL), and VIM-2 (Verona integron-encoded MBL)) and the identification of suitable fluorogenic substrates (umbelliferone-derived cephalosporins). The fluorogenic substrates were compared to chromogenic substrates (CENTA, nitrocefin, and imipenem), showing improved sensitivity and kinetic parameters. The efficiency of the fluorogenic substrates was exemplified by inhibitor screening, identifying 4-chloroisoquinolinols as potential pan MBL inhibitors

    Network-based approach to predicting social response during a disease outbreak

    No full text
    Thesis: S.M., Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2014.85Cataloged from PDF version of thesis.Includes bibliographical references (pages 99-104).Epidemic trajectories and associated social responses vary widely between populations, with severe reactions sometimes observed. When confronted with fatal or novel pathogens, people exhibit a variety of behaviors from anxiety to hoarding of medical supplies, overwhelming medical infrastructure and rioting. We developed a coupled network approach to understanding and predicting social response to disease spread. We couple the disease spread and panic spread processes and model them through local interactions between agents. The behavioral contagion process depends on the prevalence of the disease, its perceived risk and a global media signal. We verify the model by analyzing the spread of disease and social response during the 2009 H1N1 outbreak in Mexico City, the 2003 SARS and 2009 H1N1 outbreaks in Hong Kong and the 2012-2013 Boston influenza season, accurately predicting population-level behavior. The effect of interventions on the disease spread and social response is explored, and we implement an optimization study to determine the least cost intervention, taking into account the costs of the disease itself, the intervention and the social response. We show that the optimal strategy is dependent upon the relative costs assigned to infection with the disease, intervention and social response, as well as the perceived risk of infection. This kind of empirically validated model is critical to exploring strategies for public health intervention, increasing our ability to anticipate the response to infectious disease outbreaks.by Shannon M. Fast.S.M

    Incorporating media data into a model of infectious disease transmission.

    No full text
    Understanding the effect of media on disease spread can help improve epidemic forecasting and uncover preventive measures to slow the spread of disease. Most previously introduced models have approximated media effect through disease incidence, making media influence dependent on the size of epidemic. We propose an alternative approach, which relies on real data about disease coverage in the news, allowing us to model low incidence/high interest diseases, such as SARS, Ebola or H1N1. We introduce a network-based model, in which disease is transmitted through local interactions between individuals and the probability of transmission is affected by media coverage. We assume that media attention increases self-protection (e.g. hand washing and compliance with social distancing), which, in turn, decreases disease model. We apply the model to the case of H1N1 transmission in Mexico City in 2009 and show how media influence-measured by the time series of the weekly count of news articles published on the outbreak-helps to explain the observed transmission dynamics. We show that incorporating the media attention based on the observed media coverage of the outbreak better estimates the disease dynamics from what would be predicted by using media function that approximate the media impact using the number of cases and rate of spread. Finally, we apply the model to a typical influenza season in Washington, DC and estimate how the transmission pattern would have changed given different levels of media coverage

    Modelling the propagation of social response during a disease outbreak.

    No full text
    Epidemic trajectories and associated social responses vary widely between populations, with severe reactions sometimes observed. When confronted with fatal or novel pathogens, people exhibit a variety of behaviours from anxiety to hoarding of medical supplies, overwhelming medical infrastructure and rioting. We developed a coupled network approach to understanding and predicting social response. We couple the disease spread and panic spread processes and model them through local interactions between agents. The social contagion process depends on the prevalence of the disease, its perceived risk and a global media signal. We verify the model by analysing the spread of disease and social response during the 2009 H1N1 outbreak in Mexico City and 2003 severe acute respiratory syndrome and 2009 H1N1 outbreaks in Hong Kong, accurately predicting population-level behaviour. This kind of empirically validated model is critical to exploring strategies for public health intervention, increasing our ability to anticipate the response to infectious disease outbreaks

    Cost of media attention resulting from the initiation of an intervention to control the disease.

    No full text
    <p>The expected cost is shown for an intervention initiated at 1000 cases with 40% edge removal. The cost coefficient for intervention (<i>c</i><sub><i>I</i></sub>) was 0.05<i>c</i><sub><i>D</i></sub>. The cost increased with the perceived risk of disease and with the social response cost coefficient (<i>c</i><sub><i>S</i></sub>). When the perceived risk of the disease was low (<i>κ</i> = 0.50), the media attention resulting from the intervention did not increase the overall cost. When the perceived risk was higher, the cost was substantially increased by the media attention.</p
    corecore