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Abstract

Genotyping errors are well-known to impact the power and type I error rate in single marker tests of association.
Genotyping errors that happen according to the same process in cases and controls are known as non-differential
genotyping errors, whereas genotyping errors that occur with different processes in the cases and controls are known as
differential genotype errors. For single marker tests, non-differential genotyping errors reduce power, while differential
genotyping errors increase the type I error rate. However, little is known about the behavior of the new generation of rare
variant tests of association in the presence of genotyping errors. In this manuscript we use a comprehensive simulation
study to explore the effects of numerous factors on the type I error rate of rare variant tests of association in the presence of
differential genotyping error. We find that increased sample size, decreased minor allele frequency, and an increased
number of single nucleotide variants (SNVs) included in the test all increase the type I error rate in the presence of
differential genotyping errors. We also find that the greater the relative difference in case-control genotyping error rates the
larger the type I error rate. Lastly, as is the case for single marker tests, genotyping errors classifying the common
homozygote as the heterozygote inflate the type I error rate significantly more than errors classifying the heterozygote as
the common homozygote. In general, our findings are in line with results from single marker tests. To ensure that type I
error inflation does not occur when analyzing next-generation sequencing data careful consideration of study design (e.g.
use of randomization), caution in meta-analysis and using publicly available controls, and the use of standard quality control
metrics is critical.
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Introduction

In anticipation of a tidal wave of next-generation sequencing

data from large case-control studies, numerous statistical tests

intended to boost statistical power have been proposed. These tests

attempt to aggregate genotype-phenotype association across

numerous single nucleotide variant sites in a region of interest

[1–11]. This new class of ‘‘rare variant tests’’ is beginning to be

applied to real sequence data, as well to both imputed and

genotype array data. However, aside from in silico simulation

studies comparing the methods, relatively little is known about the

behavior of these methods on real sequence data.

One of the first, large-scale attempts to understand rare variant

tests when applied to real sequence data was at Genetic Analysis

Workshop 17 where analyses revealed that existing rare variant

tests perform poorly on real sequence data: with both increased

type I errors and low statistical power [12]. Numerous potential

explanations for the poor performance have been suggested

including population stratification, gametic phase disequilibrium

between causal and non-causal variants and genotyping errors–

both differential and non-differential [13–16]. Recently, other

simulation [17] and mathematical [Liu et al., unpublished

manuscript] analyses have attempted to better understand the

behavior of these tests.

Addressing population stratification, gametic phase disequilib-

rium and other related issues likely amount to analytic challenges

which will be solved as methods for the analysis of sequence data

mature. However, genotyping errors, long known to impact power

and type I error in single marker (common variant) tests of

genotype-phenotype association, have typically been robust to

analytic advances, unless alternative study designs are employed

[18–20]. Thus, it is useful to consider the impact of genotyping

errors on current rare variant tests of association.

For single marker tests, when genotyping errors occur according

to an error process that is unrelated to the phenotype (non-

differential genotype errors), power loss is observed [21–26].

Recently, we considered the impact of non-differential genotype

errors on rare variant tests of association [27]. We found that even

at very low genotype error rates, misclassifying common homo-

zygotes as heterozygotes translates into substantial power loss for

rare variant tests, an effect that is magnified as the minor allele

frequency (MAF) at the site decreases. Additionally, we demon-

strated that at low error rates, heterozygote to homozygote errors

have little impact on power. Heterozygote to (common) homozy-
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gote errors can be common in practice, and, at moderate to large

error rates, can also substantially impact power.

Differential errors, genotyping errors that result from a process

that is different for cases and controls, are well-known to inflate the

type I error for single marker tests of association [28,29].

Specifically, Ahn et al. [29] found that type I errors increase as

MAF decreases, as differential errors coding more common to less

common genotypes increase, and as sample size increases.

However, no work has been done to explore the impact of

differential genotyping errors on the new class of rare variant tests

of association. Since low MAF markers are the most prone to type

I errors from differential genotyping errors and rare variant tests

are, by their very nature, focused on the rarest of variants, it is

especially prudent to explore the impact of differential error on

rare variant tests.

There are numerous plausible explanations for differential error

processes in rare variant data. As is the case for single-marker tests

of association, without good study designs which ensures random

assignment of samples to sequencing centers, to individuals

handling the samples, to sequencing machines, etc., genotyping

errors can easily occur at different rates in the cases and controls.

One particular area of concern is the increasing trend to use

publicly available databases of controls. When using publicly

available databases, there is no random assignment of cases and

controls to sequencing pipelines, thus there are numerous ways

that differential genotyping errors can be introduced. Further-

more, even if publicly available datasets are simply being used to

impute rare variants, the potential for differential genotyping

imputation error exists. Similarly, when using a Bayesian prior

based on the known MAF at the variant site to call rare genotypes

there is a potential for differential genotyping errors when the

Bayesian prior favors variants observed more frequently in the

cases or controls.

In this manuscript, we conduct a comprehensive simulation

study to evaluate the extent to which differential genotyping errors

impact the type I error rate of five recently proposed rare variant

tests of association. We also evaluate the factors associated with

increased type I error rate in rare variant tests of association.

Methods

Simulation of Genotypes and Phenotypes
The methods used to simulate genotypes in this study have been

described elsewhere [27].We provide a brief overview here. We

considered a total of four different genotype distributions at the

locus of interest. Namely, all possible combinations of the

following two parameters: Low/High number of single nucleotide

variants (SNVs; 8 or 64 at the locus) and Low/High MAF of the

SNVs at the locus (0.1%/1% or 0.5%/5%). At each locus L of

the SNVs are more common (1% or 5% MAF), and J are less

common (0.1% or 0.5%). Genotypes were simulated indepen-

dently and assuming Hardy-Weinberg Equilibrium. Sample sizes

(sets of genotypes) of 1000, 2000 and 3000 were considered for

each genotype distribution (for a total of 463=12 sample size/

genotype distribution combinations). Simulated genotypes (repre-

senting individuals) were randomly assigned as cases or controls (in

equal proportion), in line with the null hypothesis that the locus is

not related to the dichotomous disease phenotype.

Simulating Differential Genotype Errors
Because the focus of our analysis is on rare variants, we only

considered genotyping errors between the common homozygote

and the heterozygote. Let e01= the probability that an individual

who is actually the common homozygote is misclassified as the

heterozygote, and let e10= the probability that an individual who is

actually the heterozygote is misclassified as the common homo-

zygote. We considered three types of error models in the main

simulation, with additional settings considered in an additional

simulation (see Additional simulation settings). The three main error

models considered were (a) Homozygote to heterozygote errors

only (e01 = e and e10=0), (b) Heterozygote to Homozygote errors

only (e01 = 0 and e10= e) and (c) Both errors present (e01= e10= e).
We considered three different values for e in the controls: 0.1%,

1% and 5%. To simulate differential errors, the value of e in the

cases was then increased to e+0.1%, e+0.5% or e+1%. Thus, in

total, the main simulation analysis considers 324 total settings: all

possible combinations of the 6 factors (# SNPs (8 or 64), MAF

(0.1%/1% or 0.5%/5%, sample size (1000, 2000 or 3000),

magnitude of errors (0.1%, 1% or 5%), error model (e01 only, e10
only or both e10 and e01) and differential effect in cases (0.1%,

0.5% or 1%)).

Additional Simulation Settings
Recognizing that because of the nature of genotype calling

algorithms, it is likely that the heterozygote to homozygote error

rate (e10) may be much larger than the homozygote to

heterozygote error rate (e01) we conducted a small additional

simulation study considering error rates reflecting this. Specifically,

as in Powers et al. [27], we let e10 = 10e01. For this small

simulation study, we consider only a sample size of 2000

individuals (1000 cases and 1000 controls), either 8 or 32 SNVs

where L of the SNV’s have MAF=0.001, and J have

MAF=0.01. Furthermore, we investigated three different combi-

nations of genotyping error rates in the controls: 0.1%/1% (e01/
e10), 1%/10% and 5%/50%. To introduce differential error we

increased each error rate, considering four different options:

e01+0.1% and e10+0.1%, e01+0.3% and e10+0.3%, e01+0.5% and

e10+0.5%, and e01+1% and e10+1% in the cases. Thus, we

considered a total of 24 settings; all possible combinations of

number of SNVs (8 or 32), control genotype error rate (0.001/

0.01, 0.01/0.10, 0.05/0.5), and differential case error rate

(magnitude of change 0.1%, 0.3%, 0.5% or 1%).

Rare Variant Tests Used to Analyze Data
This paper examines the effects of differential genotyping

error through consideration of five commonly used rare variant

tests of association: Combined Multivariate and Collapsing

(CMC) [1], Weighted-Sum (WS) [2], Proportion Regression

(PR) [5], Cumulative Minor Allele Test (CMAT) [7], and

Sequence Kernel Association Test (SKAT) [11]. These methods

are all described in detail in the original papers proposing these

methods, with our specific implementations of the first four

methods described in Powers et al. [27]. In the following

sections we briefly describe each method, and explain our

implementation of SKAT.

CMC
The combined multivariate and collapsing (CMC) test aggre-

gates mutations at rare variant sites within a defined region

according a threshold defined a priori (here, all sites were

aggregated since we only consider rare variation; MAF,5%).

Each individual is assigned a dichotomous variable representing

their status across all sites at the locus: a 0 if all sites are wildtype

and a 1 if one or more rare variants are present in the region. The

asymptotic distribution of Hotelling’s T2 is used to evaluate

statistical significance.

Impact of Differential Errors
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WS
The weighted sum (WS) method employs a weighting scheme

to increase the signal of the rarest variants. A weight is

calculated for each variant site by estimating the standard

deviation of the total number of mutations in controls. Each

individual is assigned a score that is the sum of the number of

minor alleles divided by the weight at each site. Individuals are

ranked according to their score. The test statistic is the sum of

the rankings of case individuals. Statistical significance is

assessed using a permutation approach with 1000 permutations

of case/control status.

PR
In proportion regression (PR), disease status is regressed on

a single covariate representing the percentage of sites at the locus

which possess a rare variant for the individual. We used logistic

regression and the asymptotic distribution of the likelihood ratio

statistic to assess statistical significance.

CMAT
The cumulative minor allele test (CMAT) counts the total

number of rare/common alleles within the locus of interest for

both cases and controls and uses a test statistic similar in spirit to

a Pearson chi-squared test, where permutation is used to assess

statistical significance since individuals can contribute multiple

counts.

SKAT
The sequence kernel association test (SKAT) uses a multiple

regression model to directly regress the phenotype on genetic

variants at the locus. SKAT analyzes the regression coefficients of

the variants using a variance component score test using an

unweighted linear kernel. P-values are computed analytically. We

used the R package provided by the authors of SKAT to generate

p-values for our analysis.

Computing Type I Error
1000 separate simulations of each of the 324 parameter settings

in the main simulation study, along with 1000 simulations of the

each of the 24 settings in the additional simulation analysis, were

used to assess the type I error rate. The type I error rate was

assessed as the proportion of the 1000 simulations generating p-

values less than 0.05.

Results

Overall Assessment of Type I Error Rate Inflation
Across the 324 settings and five rare variant tests, the

estimated type I error rate ranged from 1.2% to 100%.

However, for each of the five tests, the majority of simulation

settings showed meaningfully increased type I error, which we

define as a type I error rate above 6.1% (a value which should

occur less than 5% of the time by random chance if the true

type I error rate is actually 5%). Specifically, for CMC, 62.7%

of the 324 settings showed a type I error rate above 6.1%, with

similar values for the other four tests (WS 67.6%, PR 69.8%,

CMAT 77.5%, SKAT 56.2%). Simulations with no genotype

errors but other simulation parameters related to those

considered in this manuscript, show either control or slight

conservatism in the empirical nominal type I error rate for

CMC, WS, PR, and CMAT (Powers et al. 2011). SKAT shows

similar patterns (detailed results not shown).

Impact of Different Factors on Type I Error Rate
In order to understand, generally, how the type I error rate is

affected by each of the six simulation parameters, we fit five

separate multiple regression models: one for each rare variant test.

The model predicted the observed type I error rate by each of the

six simulation parameters (where we used relative amount of

differential expression, case error rate divided control error rate,

instead of magnitude of differential error). Model r2 values ranged

from 41 to 56% suggesting that the main effects of the six

simulation parameters explained the approximately half of the

total change observed in the type I error rate.

Table 1 gives the seven coefficients corresponding to the six

simulation parameters (there two coefficients for the error model

parameter since we use indicator variables) for each of the five rare

variant tests. Five of the seven coefficients are significant in each

model, suggesting that most simulation factors directly impact the

type I error rate. We provide a brief interpretation of the

coefficients from Table 1 here. The impact of sample size was

positive for all tests, meaning that as sample size increases, type I

error rate increases for all tests. Across the settings considered

here, type I error increased by between 3.7 to 6.3% for each

additional 1000 individuals in the study.

The Type I error rate also increased as the number of variants

increased for all tests. Specifically, for each additional variant

added to the test (for which the same differential error model is

true), the type I error rate increased between 0.14 and 0.34%.

The impact on type I error rate lessened as the minor allele

frequency increased. Specifically, for every 1% increase in minor

allele frequency the type I error rate decreased by approximately

7.9 to 12.0%.

As expected, the relative amount of differential error is strongly

associated with the observed type I error rate. Namely, as the

relative amount of differential error increased, the type I error rate

increased. For example, if the relative amount of genotype error

(case error rate/control error rate) increases from 2 to 3 (e.g., goes

from 2%/1% to 3%/1%), the type I error rate increases by

approximately 2.5 and 3.7%. Because we used the relative

differential error in our model, the control error rate showed

little effect on type I error rate.

The error model coefficients are based on indicator variables.

The coefficient for the e10 only model shows that there is a smaller

increase in type I error rate when only e10 errors occur than when

both e10 and e01 errors occur. Additionally, there is not a significant
difference between the e01 only error model and the both errors

model. The difference in effect is estimated to be between 42%

and 63% more type I errors in either model that contains

homozygote to heterozygote errors, as compared to a model with

only heterozygote to homozygote errors.

Figures 1, 2, and 3 illustrate the observed type I error rate

(averaged across all simulation settings) for each of the five tests,

and for each of the nine combinations of case and control error

rates. Differential genotyping error, even in low amounts (0.2%)

can substantially increase the type I error rate for all five tests.

As suggested by the multiple regression models, there is

a significant impact of sample size on the type I error rate of the

different tests. Figure 4 illustrates how the magnitude of the

differential errors and the sample size combine to impact the type I

error rate. Similar graphs are obtained for all five rare variant tests

and other simulation settings (details not shown).

Analysis of Additional Simulation Settings
As noted earlier, in addition to the main simulation study which

covered 324 settings, we also conducted a small simulation study

covering 24 settings, which were selected to reflect genotyping

Impact of Differential Errors
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error patterns that may be observed based on current genotype

calling algorithms. Figures 5 and 6 each illustrate the type I error

rate for four of the twenty-four settings. In each case, we see that

even for very small amounts of differential genotyping error,

substantially inflated type I errors can be observed. Additional

figures showing similar patterns for differential error models with

higher error rates show similar patterns (see Figures 7, 8, 9, and 10

for details).

Discussion

Our results demonstrate the potential for inflation of the type I

error rate in a variety of error models, across five commonly used

rare variant tests of association. Furthermore, as has been

demonstrated for single marker tests of association, increasing

the sample size and decreasing the minor allele frequency both

inflate the type I error rate. Additionally, since rare variant tests

aggregate across multiple sites, increasing the number of SNVs for

which differential genotyping error is present increases the type I

error. Lastly, as has been demonstrated for single marker tests,

differential errors which increase homozygote to heterozygote

genotyping errors are particularly detrimental.

Our results also demonstrate that increasing the relative amount

of the differential error inflates the type I error rate, while we did

not find strong evidence of an effect of the control genotyping

error rate. While we only considered three settings for the control

error rate, these results are interesting because they suggest that

even low amounts of genotyping error can be problematic if the

relative differential genotyping error is large (e.g., low error rates

of 0.1% in controls and 1.0% in cases, but large relative

differential error value of 10= 1%/0.1%).

Intuitively, type I errors are introduced from differential

genotyping errors, because, under the null hypothesis of no

association between the locus and the phenotype, the allele

frequency distributions are identical. Non-differential genotyping

errors do not increase the type I error rate, because the allele

Table 1. Coefficients from regression models predicting type I error rate.

Parameter CMC WS PR CMAT SKAT

Sample Size 5.661025*** 3.761025* 4.161025** 4.361025** 6.361025***

Number of variants 1.461023** 3.261023*** 3.461023*** 3.161023*** 2.961023***

MAF 29.961022*** 27.961022** 28.361022** 29.561022*** 21.261021***

Relative amount of differential
error

3.161022*** 2.561022*** 2.961022*** 2.761022*** 3.761022***

Error rate in controls 21.9* 6.2 7.9 7.6 1.1

Error model e01 only 21.661022 21.861022 21.861022 21.761022 27.061023

e10 only 20.51*** 20.58*** 20.58*** 20.58*** 20.42***

*p,0.05,
**p,0.01,
***p,0.001.
doi:10.1371/journal.pone.0056626.t001

Figure 1. Type I error rate when error rate in controls is 0.10%. The observed type I error rate, averaged across all simulation settings, for
each of the five rare variant tests (CMC, WS, PR, CMAT and SKAT). Differential genotyping error can be substantial, even at low error rates.
doi:10.1371/journal.pone.0056626.g001

Impact of Differential Errors
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frequency distributions remain the same for cases and controls.

However, differential genotyping errors introduce a difference

between the case-control allele frequencies, in the same manner as

if there were a true genotype-phenotype association at the locus.

Because differential genotype errors manifest themselves as

different allele frequency distributions between cases and controls,

all of the variables that impact the power of a rare variant test of

association will also impact the type I error rate in the presence of

differential genotyping error. Specifically, increasing the sample

size will increase the power for testing a true effect, just as it

increases the type I error in the presence of differential genotyping

errors. Similarly, the relative amount of differential genotyping

errors, the number of SNVs at the locus, the MAF and the type of

errors observed (homozygote to heterozygote or vice versa) are all

related to type I errors.

Figure 2. Type I error rate when error rate in controls is 1%. The observed type I error rate, averaged across all simulation settings, for each of
the five rare variant tests (CMC, WS, PR, CMAT and SKAT). Modest levels of differential genotyping error rates can substantially increase the type I error
rate.
doi:10.1371/journal.pone.0056626.g002

Figure 3. Type I error rate when error rate in controls is 5%. The observed type I error rate, averaged across all simulation settings, for each of
the five rare variant tests (CMC, WS, PR, CMAT and SKAT). High levels of differential genotyping errors can substantially increase the type I error rate.
doi:10.1371/journal.pone.0056626.g003

Impact of Differential Errors
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This intuition helps to not only explain why certain factors are

related to the type I error rate, but also points to areas of concern

and caution for researchers today. For example, increasingly

researchers are turning to meta-analytic techniques and combin-

ing datasets across multiple labs, or using publicly available

controls. The goal, of course, is to increase power by increasing

sample size. A significant concern raised by our analysis is that if

different error processes are present in the samples in a manner

associated with the phenotype, there is the potential for significant

type I error problems.

As noted in the text, there were also numerous settings

considered in our analyses where the type I error rate did not

Figure 4. Type I error rate by case genotyping error rate and sample size. An example of how the Type I error rate changes by sample size
and amount of differential genotyping error. Notably, as the amount of differential genotyping error increases, and as the sample size increases, the
Type I error rate increases. Here we show results from the PR test with a control genotype error rate of 0.1%, e01 = e10, 8 SNVs, with 6 SNVs at
MAF= 0.1% and 2 SNVs at MAF= 1%. Different values for the case error rate vary along the x-axis.
doi:10.1371/journal.pone.0056626.g004

Figure 5. Type I error rate variability by error model for a gene with 8 SNVs. Figure 5 considers a gene containing 8 rare variants. All error
models have control error rates fixed at e10 = 1% and e01 = 0.1%. For error model A cases: e10 = 1.1%, e01 = 0.2%, error model B is cases: e10 = 1.3%,
e01 = 0.4%, error model C is cases: e10 = 1.5%, e01 = 0.6% and error model D is cases: e10 = 2.0%, e01 = 1.1%. Type I error increases for all error models as
the genotyping error rate increases.
doi:10.1371/journal.pone.0056626.g005

Impact of Differential Errors
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inflate. In general, these settings were when the sample size was

small, the MAF was large and the differential genotyping errors

impacted the heterozygote to homozygote genotyping errors.

While important to note that type I errors will not always inflate in

the presence of differential genotyping errors, power will also tend

to be low in many such studies. Essentially, as the overall power of

a study increases, so does the potential that the study is impacted

by an inflated type I error rate.

Despite the rush to justify the existence of next-generation

sequencing data, caution and attention to quality study design

techniques will be critical. This means researchers must ensure

random assignment of cases and controls to sequencing locations

and using basic quality control procedures on sequencing data. For

example, Q–Q plots are commonly used to detect large-scale type

I error problems (e.g., from population stratification), and thus are

a practical way to detect data-set wide type I error problems. Of

Figure 6. Type I error rate variability by error model for a gene with 32 SNVs. Figure 6 considers a gene containing 32 rare variants and
considers the same error models as are in Figure 5.
doi:10.1371/journal.pone.0056626.g006

Figure 7. Type I error rate variability across additional error models: a gene with 8 SNVs. Figure 7 considers loci with 8 rare variants. All
error models have controls: e10 = 10% and e01 = 1%. For error model E cases: e10 = 10.1%, e01 = 1.1%, error model F is cases: e10 = 10.3%, e01 = 1.3%,
error model G is cases: e10 = 10.5%, e01 = 1.5% and error model H is cases: e10 = 11.0%, e01 = 2%.
doi:10.1371/journal.pone.0056626.g007

Impact of Differential Errors
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course, individual loci that may be affected by type I errors will not

be identified by this approach, which underscores that careful

design strategies still must be employed, and replication of

significant findings is necessary. Furthermore, there are a host

general quality control steps that should be taken in an NGS study.

While best-practices continue to develop, evaluating data quality

(e.g., individual SNP quality via BAM files) and designing studies

to include some redundancy (e.g., technical replicates and/or

genotyping some participants with arrays) are generally recom-

mended and may help to identify genotype errors before they

impact downstream statistical analyses.

Importantly, we note that our findings apply not only to next-

generation sequencing technology, but to imputed variants or

variants genotyped on an array as well. Our approach is not

technology specific, but considers the impact of differential errors

Figure 8. Type I error rate variability across additional error models: a gene with 32 SNVs. Figure 8 considers loci with 32 rare variants
and considers the same error models as are in Figure 7.
doi:10.1371/journal.pone.0056626.g008

Figure 9. Type I error rate variability across additional error models: a gene with 8 SNVs. Figure 9 considers loci with 8 rare variants. All
error models have controls: e10 = 50% and e01 = 5%. For error model I cases: e10 = 50.1%, e01 = 5.1%, error model J is cases: e10 = 50.3%, e01 = 5.3%, error
model K is cases: e10 = 50.5%, e01 = 5.5% and error model L is cases: e10 = 51.0%, e01 = 6%.
doi:10.1371/journal.pone.0056626.g009

Impact of Differential Errors
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on the statistical methods used to analyze rare variant data,

regardless of the technology used to generate the variant calls.

There are some limitations of our analysis worth noting. We use

simulated genotype data which ignores LD, and simplifies the true

allele frequency distribution observed in next-generation sequenc-

ing data. These simplifying assumptions are common in method-

ological papers on rare-variant tests of association proposed to

date, however further analysis is necessary to project these findings

to more realistic sequence data. Second, the goal of this paper was

not to compare which rare variant tests may be more or less

resistant to certain types of genotyping errors. Notably, in our

analyses SKAT appear to be more resistant to type I errors than

the other methods. However, SKAT was designed to perform

optimally in situations where there is a mix of signals, resulting

from a combination of neutral, protective and risk variants and has

been observed to have a conservative type I error rate in some

settings. Recent work (Liu, unpublished manuscript) also provides

a general framework for rare variant tests which classifies CMC,

PR, CMAT and WS differently than SKAT, which may also

explain some of the differences observed here. Additionally, more

complex error models should be considered as more is learned

about the error processes involved next-generation sequencing

data. Fourth, our analysis of type I errors considers a significance

level of 5%, which is unrealistic for large genome-wide studies.

Without analytic consideration of the different tests or substantially

more computation time to simulate data, estimates of type I error

rates at lower significance levels cannot be obtained. However, as

has been found with single marker tests, we have no reason to

believe that the patterns of results will be different at different

significance levels. Finally, our choice to use only additive main

effects in the multiple regression model is a simplistic one that does

not completely reflect the underlying complexity (non-linear

relationships; interactions, etc.) of the relationship between the

six parameters considered here and type I error. A more detailed

analysis should be conducted for any particular study design or

error pattern of interest. However, given that the models explained

a significant portion of the variance in the type I error rate, they

can be interpreted as giving a general sense of the true

relationships.

Our analysis has demonstrated that type I errors caused by

differential genotyping errors could be a significant problem in

rare variant tests of association applied to next-generation

sequencing data. In fact, some early application of the tests to

real sequencing data suggests this could be the case. Careful

consideration of study design, caution in meta-analysis and using

publicly available controls, and use of standard quality control

metrics is critical in an effort to minimize type I errors. Further

work is necessary to fully characterize and explore the creation

and consequences of differential genotyping errors in rare variant

tests of association.
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