8 research outputs found

    Investigating the expressions of miRNA-125b and TP53 in endometriosis. Does it underlie cancer-like features of endometriosis? A case-control study

    Get PDF
    Background: Endometriosis is generally considered as a benign condition; however, there is a possibility for it to become cancerous. miR-125b is upregulated in both endometriotic tissues and serum samples of women with endometriosis but its potential targets in endometriosis are still not fully understood. Objective: The role of miR-125b in the regulation of TP53 expression in endometriosis was tested with a bioinformatics approach. In addition, the expression of miR-125b and TP53 in both eutopic (Eu-p) and ectopic endometrium (Ec-p) in the endometrium tissues of women with endometriosis was compared to those in the normal endometrium tissues of controls (Normal). Materials and Methods: In this case-control study, the Eu-p and Ec-p samples were collected from 20 women who underwent laparoscopic surgery, and the normal endometrium tissues were collected from 20 controls with no evidence of endometriosis. For bioinformatics approach, a protein-protein interaction network was constructed based on co-expressed potential targets of miR-125b. Quantitative polymerase chain reaction technique was used for the measurement of miR125b and TP53 expression. Results: Our results showed that miR-125b was significantly overexpressed in Ec-p (p-value: 0.021). In addition, there was a significant TP53 under expression in both the Ec-p and Eu-p samples compared with the Normal tissues (p-value: 0.003). Conclusion: The negative correlation between miR-125b and TP53 as well as a noticeable decreased expression of TP53 in both Ec-p and Eu-p samples may be interpreted as the roles of miR-125b/TP53 axis in the pathogenesis of endometriosis. In addition, these findings and bioinformatic analyses imply a possible role of miR-125b in cancer-like features of endometriosis. Key words: Endometriosis, TP53, miR-125b, Ectopic endometrium, Eutopic endometrium

    Long non-coding RNAs and JAK/STAT signaling pathway regulation in colorectal cancer development

    Get PDF
    Colorectal cancer (CRC) is one of the main fatal cancers. Cell signaling such as Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling substantially influences the process of gene expression and cell growth. Long non-coding RNAs (lncRNAs) play regulatory roles in cell signaling, cell proliferation, and cancer fate. Hence, lncRNAs can be considered biomarkers in cancers. The inhibitory or activating effects of different lncRNAs on the JAK/STAT pathway regulate cancer cell proliferation or tumor suppression. Additionally, lncRNAs regulate immune responses which play a role in immunotherapy. Mechanisms of lncRNAs in CRC via JAK/STAT regulation mainly include cell proliferation, invasion, metastasis, apoptosis, adhesion, and control of inflammation. More profound findings are warranted to specifically target the lncRNAs in terms of activation or suppression in hindering CRC cell proliferation. Here, to understand the lncRNA cross-talk in CRC through the JAK/STAT signaling pathway, we collected the related in vitro and in vivo data. Future insights may pave the way for the development of novel diagnostic tools, therapeutic interventions, and personalized treatment strategies for CRC patients

    Enzymatic Methods for Mutation Detection in Cancer Samples and Liquid Biopsies

    No full text
    Low-level tumor somatic DNA mutations in tissue and liquid biopsies obtained from cancer patients can have profound implications for development of metastasis, prognosis, choice of treatment, follow-up, or early cancer detection. Unless detected, such low-frequency DNA alterations can misinform patient management decisions or become missed opportunities for personalized medicine. Next-generation sequencing technologies and digital-PCR can resolve low-level mutations but require access to specialized instrumentation, time, and resources. Enzymatic-based approaches to detection of low-level mutations provide a simple, straightforward, and affordable alternative to enrich and detect such alterations and is broadly available to low-resource laboratory settings. This review summarizes the traditional uses of enzymatic mutation detection and describes the latest exciting developments, potential, and applications with specific reference to the field of liquid biopsy in cancer

    Pre-PCR Mutation-Enrichment Methods for Liquid Biopsy Applications

    No full text
    Liquid biopsy is having a remarkable impact on healthcare- and disease-management in the context of personalized medicine. Circulating free DNA (cfDNA) is one of the most instructive liquid-biopsy-based biomarkers and harbors valuable information for diagnostic, predictive, and prognostic purposes. When it comes to cancer, circulating DNA from the tumor (ctDNA) has a wide range of applications, from early cancer detection to the early detection of relapse or drug resistance, and the tracking of the dynamic genomic make-up of tumor cells. However, the detection of ctDNA remains technically challenging, due, in part, to the low frequency of ctDNA among excessive circulating cfDNA originating from normal tissues. During the past three decades, mutation-enrichment methods have emerged to boost sensitivity and enable facile detection of low-level mutations. Although most developed techniques apply mutation enrichment during or following initial PCR, there are a few techniques that allow mutation selection prior to PCR, which provides advantages. Pre-PCR enrichment techniques can be directly applied to genomic DNA and diminish the influence of PCR errors that can take place during amplification. Moreover, they have the capability for high multiplexity and can be followed by established mutation detection and enrichment technologies without changes to their established procedures. The first approaches for pre-PCR enrichment were developed by employing restriction endonucleases directly on genomic DNA in the early 1990s. However, newly developed pre-PCR enrichment methods provide higher sensitivity and versatility. This review describes the available pre-PCR enrichment methods and focuses on the most recently developed techniques (NaME-PrO, UVME, and DEASH/MAESTRO), emphasizing their applications in liquid biopsies
    corecore