16,257 research outputs found
Simplified methods for calculating photodissociation rates
Simplified methods for calculating the transmission of solar UV radiation and the dissociation coefficients of various molecules are compared. A significant difference sometimes appears in calculations of the individual band, but the total transmission and the total dissociation coefficients integrated over the entire SR (solar radiation) band region agree well between the methods. The ambiguities in the solar flux data affect the calculated dissociation coefficients more strongly than does the method. A simpler method is developed for the purpose of reducing the computation time and computer memory size necessary for storing coefficients of the equations. The new method can reduce the computation time by a factor of more than 3 and the memory size by a factor of more than 50 compared with the Hudson-Mahle method, and yet the result agrees within 10 percent (in most cases much less) with the original Hudson-Mahle results, except for H2O and CO2. A revised method is necessary for these two molecules, whose absorption cross sections change very rapidly over the SR band spectral range
A synoptic description of coal basins via image processing
An existing image processing system is adapted to describe the geologic attributes of a regional coal basin. This scheme handles a map as if it were a matrix, in contrast to more conventional approaches which represent map information in terms of linked polygons. The utility of the image processing approach is demonstrated by a multiattribute analysis of the Herrin No. 6 coal seam in Illinois. Findings include the location of a resource and estimation of tonnage corresponding to constraints on seam thickness, overburden, and Btu value, which are illustrative of the need for new mining technology
Early life growth patterns persist for 12 years and impact pulmonary outcomes in cystic fibrosis
BACKGROUND:
In children with cystic fibrosis (CF), recovery from growth faltering within 2 years of diagnosis (Responders) is associated with better growth and less lung disease at age 6 years. This study examined whether these benefits are sustained through 12 years of age.
METHODS:
Longitudinal growth from 76 children with CF enrolled in the Wisconsin CF Neonatal Screening Project was examined and categorized into 5 groups: R12, R6, and R2, representing Responders who maintained growth improvement to age 12, 6, and 2 years, respectively, and I6 and N6, representing Non-responders whose growth did and did not improve during ages 2-6 years, respectively. Lung disease was evaluated by % predicted forced expiratory volume in one second (FEV1) and chest radiograph (CXR) scores.
RESULTS:
Sixty-two percent were Responders. Within this group, 47% were R12, 28% were R6, and 25% were R2. Among Non-responders, 76% were N6. CF children with meconium ileus (MI) had worse lung function and CXR scores compared to other CF children. Among 53 children with pancreatic insufficiency without MI, R12 had significantly better FEV1 (97-99% predicted) and CXR scores during ages 6-12 years than N6 (89-93% predicted). Both R6 and R2 experienced a decline in FEV1 by ages 10-12 years.
CONCLUSIONS:
Early growth recovery in CF is critical, as malnutrition during infancy tends to persist and catch-up growth after age 2 years is difficult. The longer adequate growth was maintained after early growth recovery, the better the pulmonary outcomes at age 12 years
Efficient white noise sampling and coupling for multilevel Monte Carlo with non-nested meshes
When solving stochastic partial differential equations (SPDEs) driven by
additive spatial white noise, the efficient sampling of white noise
realizations can be challenging. Here, we present a new sampling technique that
can be used to efficiently compute white noise samples in a finite element
method and multilevel Monte Carlo (MLMC) setting. The key idea is to exploit
the finite element matrix assembly procedure and factorize each local mass
matrix independently, hence avoiding the factorization of a large matrix.
Moreover, in a MLMC framework, the white noise samples must be coupled between
subsequent levels. We show how our technique can be used to enforce this
coupling even in the case of non-nested mesh hierarchies. We demonstrate the
efficacy of our method with numerical experiments. We observe optimal
convergence rates for the finite element solution of the elliptic SPDEs of
interest in 2D and 3D and we show convergence of the sampled field covariances.
In a MLMC setting, a good coupling is enforced and the telescoping sum is
respected.Comment: 28 pages, 10 figure
Venous thromboembolism related to cytomegalovirus infection: A case report and literature review
DEKAS - An evolutionary case-based reasoning system to support protection scheme design
This paper describes a decision support system being developed in conjunction with two UK utility companies to aid the design of electrical power transmission protection systems. A brief overview of the application domain is provided, followed by a description of the work carried out to date concerning the development and deployment of the Design Engineering Knowledge Application System (DEKAS). The paper then discusses the provision of intelligent decision support to the design engineer through the application of case-based reasoning (CBR). The key benefits from this will be outlined in conjunction with a relevant case study
The window of visibility: A psychological theory of fidelity in time-sampled visual motion displays
Many visual displays, such as movies and television, rely upon sampling in the time domain. The spatiotemporal frequency spectra for some simple moving images are derived and illustrations of how these spectra are altered by sampling in the time domain are provided. A simple model of the human perceiver which predicts the critical sample rate required to render sampled and continuous moving images indistinguishable is constructed. The rate is shown to depend upon the spatial and temporal acuity of the observer, and upon the velocity and spatial frequency content of the image. Several predictions of this model are tested and confirmed. The model is offered as an explanation of many of the phenomena known as apparent motion. Finally, the implications of the model for computer-generated imagery are discussed
A nonlocal kinetic energy functional for an inhomogeneous two-dimensional Fermi gas
The average-density approximation is used to construct a nonlocal kinetic
energy functional for an inhomogeneous two-dimensional Fermi gas. This
functional is then used to formulate a Thomas-Fermi von Weizs\"acker-like
theory for the description of the ground state properties of the system. The
quality of the kinetic energy functional is tested by performing a fully
self-consistent calculation for an ideal, harmonically confined,
two-dimensional system. Good agreement with exact results are found, with the
number and kinetic energy densities exhibiting oscillatory structure associated
with the nonlocality of the energy functional. Most importantly, this
functional shows a marked improvement over the two-dimensional Thomas-Fermi von
Weizs\"acker theory, particularly in the vicinity of the classically forbidden
region.Comment: 7 figure
Trial management- building the evidence base for decision-making
Acknowledgements Not applicable Funding Not applicablePeer reviewedPublisher PD
Knowledge, management and intelligent decision support for protection scheme design and application in electrical power systems
The paper describes a research project carried out inconjunction with two major UK utilities, focusing on the introduction of knowledge management and intelligent decision support to the existing protection design and application processes operated within both companies. A brief overview is provided of the generic design process, and the development of the web-based Design Engineering Knowledge Application System (DEKAS). This system incorporates intelligent case based reasoning (CBR) functionality to address the knowledge management and decision support requirements of each company's design process. The perceived key benefits of DEKAS relating to the management and utilisation of the data, information and knowledge throughout the protection design process is also discussed
- …
