When solving stochastic partial differential equations (SPDEs) driven by
additive spatial white noise, the efficient sampling of white noise
realizations can be challenging. Here, we present a new sampling technique that
can be used to efficiently compute white noise samples in a finite element
method and multilevel Monte Carlo (MLMC) setting. The key idea is to exploit
the finite element matrix assembly procedure and factorize each local mass
matrix independently, hence avoiding the factorization of a large matrix.
Moreover, in a MLMC framework, the white noise samples must be coupled between
subsequent levels. We show how our technique can be used to enforce this
coupling even in the case of non-nested mesh hierarchies. We demonstrate the
efficacy of our method with numerical experiments. We observe optimal
convergence rates for the finite element solution of the elliptic SPDEs of
interest in 2D and 3D and we show convergence of the sampled field covariances.
In a MLMC setting, a good coupling is enforced and the telescoping sum is
respected.Comment: 28 pages, 10 figure