413 research outputs found

    Mineralogic variations in fluvial sediments contaminated by mine tailings as determined from AVIRIS data, Coeur D'Alene River Valley, Idaho

    Get PDF
    The success of imaging spectrometry in mineralogic mapping of natural terrains indicates that the technology can also be used to assess the environmental impact of human activities in certain instances. Specifically, this paper describes an investigation into the use of data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) for mapping the spread of, and assessing changes in, the mineralogic character of tailings from a major silver and base metal mining district. The area under investigation is the Coeur d'Alene River Valley in northern Idaho. Mining has been going on in and around the towns of Kellogg and Wallace, Idaho since the 1880's. In the Kellogg-Smelterville Flats area, west of Kellogg, mine tailings were piled alongside the South Fork of the Coeur d'Alene River. Until the construction of tailings ponds in 1968 much of these waste materials were washed directly into the South Fork. The Kellogg-Smelterville area was declared an Environmental Protection Agency (EPA) Superfund site in 1983 and remediation efforts are currently underway. Recent studies have demonstrated that sediments in the Coeur d'Alene River and in the northern part of Lake Coeur d'Alene, into which the river flows, are highly enriched in Ag, Cu, Pb, Zn, Cd, Hg, As, and Sb. These trace metals have become aggregated in iron oxide and oxyhydroxide minerals and/or mineraloids. Reflectance spectra of iron-rich tailing materials are shown. Also shown are spectra of hematite and goethite. The broad bandwidth and long band center (near 1 micron) of the Fe(3+) crystal-field band of the iron-rich sediment samples combined with the lack of features on the Fe(3+) -O(2-) charge transfer absorption edge indicates that the ferric oxide and/or oxyhydroxide in these sediments is poorly crystalline to amorphous in character. Similar features are seen in poorly crystalline basaltic weathering products (e.g., palagonites). The problem of mapping and analyzing the downriver occurrences of iron rich tailings in the Coeur d'Alene (CDA) River Valley using remotely sensed data is complicated by the full vegetation cover present in the area. Because exposures of rock and soil were sparse, the data processing techniques used in this study were sensitive to detecting materials at subpixel scales. The methods used included spectral mixture analysis and a constrained energy minimization technique

    Multispectral Evidence of Alteration from Murray Ridge to Marathon Valley Observed by the Opportunity Pancam on the Rim of Endeavour Crater, Mars

    Get PDF
    The Mars Exploration Rover Opportunity has been traversing the rim of the Noachianaged, 22 km diameter Endeavour crater. Circa sol 3390 of its mission, Opportunity reached the northern tip of the rim segment known as Solander Point and has since been traversing the rim to the south to its current location at the break in the rim known as Marathon Valley. The rocks making up the rim are dominated by impact breccias consisting of clasts and a finergrained matrix. Several segments of the rim are transected by fractures as observed from orbital HiRISE imagery. Pancam multispectral observations of outcrop in these fracture regions, including part of the rim crest dubbed Murray Ridge, the Hueytown fracture, and Marathon Valley have been made. Over the range of 430 to 1010 nm there are changes in the multispectral reflectance signature of the breccia matrix with an increase in 535 nm and 904 nm band depth. This is attributed to oxidation and an increase in ferric oxides in these areas. In situ observations by the rover's APXS also indicate chemical differences associated with the matrix along these fractures, including increasing Fe/Mn southward from Solander Point to a region having an AlOH signature in CRISM spectra, and generally higher SO3 in the Hueytown fracture region and the area around Spirit of St. Louis. Overturned rocks observed on Murray Ridge were determined by the APXS to have elevated Mn and Pancam spectra of the high Mn spots have a characteristic red, featureless slope. This spectrum was also observed in association with some coatings on blocks of the sulfaterich Grasberg formation. Spectra resembling red hematite are observed in some zones in association with the craterform feature Spirit of St. Louis outside the mouth (to the west) of Marathon Valley. Marathon Valley itself has been observed from orbital hyperspectral observations by the CRISM sensor to host occurrences of Fe/Mg smectite minerals indicating extensive aqueous alteration in this region. Pancam observations in Marathon Valley will play an important role in surveying outcrop and making VNIR spectral comparisons with clay bearing outcrop examined earlier in the mission at the Matijevic Hill region

    Evaluating Economic and Environmental Benefits of Soil and Water Conservation Measures Applied in Missouri

    Get PDF
    This study used a combination of methods to evaluate the value of Missouri's Department of Natural Resources (MODNR) conservation programs for the affected regional economies.Material in this publication is based upon work supported by the Missouri Department of Natural Resources under project ID #00009059. This publication was prepared with the support of funds from the Missouri Parks, Soil and Water Sales Tax administered by the Soil and Water Commission and the Missouri Department of Natural Resources

    Constraining the Origin of Basaltic Volcanic Rocks Observed by Opportunity Along the Rim of Endeavour Crater

    Get PDF
    The Mars Exploration Rover (MER) Opportunity continues its exploration along the rim of Endeavour Crater. While the primary focus for investigation has been to seek evidence of aqueous alteration, Opportunity has observed a variety of rock types, including some that are hard and relatively unaltered. These rocks tend to occur most commonly as "float rocks" or "erratics" where the geologic setting does not clearly reveal their origin. Along the rim of Endeavour crater (Fig. 1), such rocks, commonly noted in Panoramic Camera (Pancam) left eye composites as "blue rocks", are abundant components of some of the Endeavour crater rim deposits, scree slopes, and colluvium deposits. In this abstract, we examine the similarity of several of these rocks analyzed using Opportunity's Alpha Particle X-Ray Spectrometer (APXS), images and color from the Pancam, and textures observed with the Microscopic Imager (MI. At issue is the blue rocks origin; are they impact melt or volcanic, what is their age relative to Endeavour crater, and how they are related to each other

    Spectral, mineralogical, and geochemical variations across Home Plate, Gusev Crater, Mars indicate high and low temperature alteration

    Get PDF
    Over the last ~ 3 years in Gusev Crater, Mars, the Spirit rover observed coherent variations in color, mineralogy, and geochemistry across Home Plate, an ~ 80 m-diameter outcrop of basaltic tephra. Observations of Home Plate from orbit and from the summit of Husband Hill reveal clear differences in visible/near-infrared (VNIR) colors between its eastern and western regions that are consistent with mineralogical compositions indicated by Mössbauer spectrometer (MB) and by Miniature Thermal Emission Spectrometer (Mini-TES). Pyroxene and magnetite dominate the east side, while olivine, nanophase Fe oxide (npOx) and glass are more abundant on the western side. Alpha Particle X-Ray Spectrometer (APXS) observations reveal that eastern Home Plate has higher Si/Mg, Al, Zn, Ni, and K, while Cl and Br are higher in the west. We propose that these variations are the result of two distinct alteration regimes that may or may not be temporally related: a localized, higher temperature recrystallization and alteration of the east side of Home Plate and lower temperature alteration of the western side that produced npOx

    Rock spectral classes observed by the Spirit Rover’s Pancam on the Gusev Crater Plains and in the Columbia Hills

    Get PDF
    This paper examines the ferrous and ferric iron mineralogy of rocks inferred from 246 visible/near-infrared (430–1010 nm) multispectral observations made by the Mars Exploration Rover Spirit’s Pancam on its traverse from its landing site to its second Winter Haven location. Principal component, correspondence analyses, and a sequential maximum angle convex cone technique were used to identify 14 candidate classes. Spectra from the West Spur of Husband Hill and the Watchtower area had the highest 535 and 601 nm band depths indicating that these areas were more oxidized. Differences in the depth and band center of a near infrared (NIR) absorption feature were observed using 904 nm band depth and 803:904 nm ratio and parameters gauging the 754–864 and 754–1009 nm slopes. Spectra of rocks from the southern flank of Husband Hill had negative 754–1009 nm slopes and a broad NIR absorption consistent with high olivine abundances. Rocks observed on the lower West Spur, at the Cumberland Ridge locale, at the Husband Hill summit, and at the Haskin Ridge locale had deep 904 nm band depths and steep 754–864 nm slopes consistent with greater pyroxene abundances. These observations are consistent with results on iron-bearing mineralogy from Spirit’s Mo¨ssbauer spectrometer. Comparisons of these rock spectral classes with a set of terrestrial analog samples found similarities between the West Spur and Watchtower classes and red hematite-bearing impact melts. Fewer similarities were found in comparisons of the Columbia Hills classes with basaltic hydrovolcanic tephras

    VNIR Multispectral Observations of Rocks at Spirit of St. Louis Crater and Marathon Valley on Th Rim of Endeavour Crater Made by the Opportunity Rover Pancam

    Get PDF
    The Mars Exploration Rover Opportunity has been exploring the western rim of the 22 km diameter Endeavour crater since August, 2011. Recently, Opportunity has reached a break in the Endeavour rim that the rover team has named Mara-thon Valley. This is the site where orbital observations from the MRO CRISM imaging spectrometer indicated the presence of iron smectites. On the outer western portion of Marathon Valley, Opportunity explored the crater-form feature dubbed Spirit of St. Louis (SoSL) crater. This presentation describes the 430 to 1009 nm (VNIR) reflectance, measured by the rover's Pancam, of rock units present both at Spirit of St. Louis and within Marathon Valley

    Abundance recovery error analysis using simulated AVIRIS data

    Get PDF
    Measurement noise and imperfect atmospheric correction translate directly into errors in the determination of the surficial abundance of materials from imaging spectrometer data. The effects of errors on abundance recovery were investigated previously using Monte Carlo simulation methods by Sabol et. al. The drawback of the Monte Carlo approach is that thousands of trials are needed to develop good statistics on the probable error in abundance recovery. This computational burden invariably limits the number of scenarios of interest that can practically be investigated. A more efficient approach is based on covariance analysis. The covariance analysis approach expresses errors in abundance as a function of noise in the spectral measurements and provides a closed form result eliminating the need for multiple trials. Monte Carlo simulation and covariance analysis are used to predict confidence limits for abundance recovery for a scenario which is modeled as being derived from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

    Spectral Variability among Rocks in Visible and Near Infrared Multispectral Pancam Data Collected at Gusev Crater: Examinations using Spectral Mixture Analysis and Related Techniques

    Get PDF
    Visible and Near Infrared (VNIR) multispectral observations of rocks made by the Mars Exploration Rover Spirit s Panoramic camera (Pancam) have been analysed using a spectral mixture analysis (SMA) methodology. Scenes have been examined from the Gusev crater plains into the Columbia Hills. Most scenes on the plains and in the Columbia Hills could be modeled as three endmember mixtures of a bright material, rock, and shade. Scenes of rocks disturbed by the rover s Rock Abrasion Tool (RAT) required additional endmembers. In the Columbia Hills there were a number of scenes in which additional rock endmembers were required. The SMA methodology identified relatively dust-free areas on undisturbed rock surfaces, as well as spectrally unique areas on RAT abraded rocks. Spectral parameters from these areas were examined and six spectral classes were identified. These classes are named after a type rock or area and are: Adirondack, Lower West Spur, Clovis, Wishstone, Peace, and Watchtower. These classes are discriminable based, primarily, on near-infrared (NIR) spectral parameters. Clovis and Watchtower class rocks appear more oxidized than Wishstone class rocks and Adirondack basalts based on their having higher 535 nm band depths. Comparison of the spectral parameters of these Gusev crater rocks to parameters of glass-dominated basaltic tuffs indicates correspondence between measurements of Clovis and Watchtower classes, but divergence for the Wishstone class rocks which appear to have a higher fraction of crystalline ferrous iron bearing phases. Despite a high sulfur content, the rock Peace has NIR properties resembling plains basalts
    • …
    corecore