42 research outputs found

    The role of indoleamine 2,3-dioxygenase-aryl hydrocarbon receptor pathway in the TLR4-induced tolerogenic phenotype in human DCs

    Get PDF
    A controlled inflammatory response is required for protection against infection, but persistent inflammation causes tissue damage. Dendritic cells (DCs) have a unique capacity to promote both inflammatory and anti-inflammatory processes. One key mechanism involved in DC-mediated immunosuppression is the expression of tryptophan-metabolizing enzyme indoleamine 2,3-dioxygenase (IDO). IDO has been implicated in diverse processes in health and disease but its role in endotoxin tolerance in human DCs is still controversial. Here we investigated the role of IDO in shaping DCs phenotype and function under endotoxin tolerance conditions. Our data show that TLR4 ligation in LPS-primed DCs, induced higher levels of both IDO isoforms together with the transcription factor aryl-hydrocarbon receptor (AhR), compared to unprimed controls. Additionally, LPS conditioning induced an anti-inflammatory phenotype in DCs - with an increase in IL-10 and higher expression of programmed death ligand (PD-L)1 and PD-L2 - which were partially dependent on IDO. Furthermore, we demonstrated that the AhR-IDO pathway was responsible for the preferential activation of noncanonical NF-κB pathway in LPS-conditioned DCs. These data provide new insight into the mechanisms of the TLR4-induced tolerogenic phenotype in human DCs, which can help the better understanding of processes involved in induction and resolution of chronic inflammation and tolerance

    Analysis of proteomic profiles and functional properties of human peripheral blood myeloid dendritic cells, monocyte-derived dendritic cells and the dendritic cell-like KG-1 cells reveals distinct characteristics

    Get PDF
    Important proteomic and functional differences between peripheral blood myeloid dendritic cells, monocyte-derived dendritic cells (moDC) and KG-1 cells have been identified

    Laminin and Fibronectin Treatment Leads to Generation of Dendritic Cells with Superior Endocytic Capacity

    Get PDF
    Copyright: 2010 Garcı´a-Nieto et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background: Sampling the microenvironment at sites of microbial exposure by dendritic cells ( DC) and their subsequent interaction with T cells in the paracortical area of lymph nodes are key events for initiating immune responses. Most of our knowledge of such events in human is based on in vitro studies performed in the absence of extracellular matrix (ECM) proteins. ECM in basement membranes and interstitial spaces of different tissues, including lymphoid organs, plays an important role in controlling specific cellular functions such as migration, intracellular signalling and differentiation. The aim of this study was, therefore, to investigate the impact of two abundant ECM components, fibronectin and laminin, on the phenotypical and functional properties of DC and how that might influence DC induced T-cell differentiation. Methodology/Principal Findings: Human monocyte derived DC were treated with laminin and fibronectin for up to 48 hours and their morphology and phenotype was analyzed using scanning electron microscopy, flow cytometry and real time PCR. The endocytic ability of DC was determined using flow cytometry. Furthermore, co-culture of DC and T cells were established and T cell proliferation and cytokine profile was measured using H(3)-thymidine incorporation and ELISA respectively. Finally, we assessed formation of DC-T cell conjugates using different cell trackers and flow cytometry. Our data show that in the presence of ECM, DC maintain a 'more immature' phenotype and express higher levels of key endocytic receptors, and as a result become significantly better endocytic cells, but still fully able to mature in response to stimulation as evidenced by their superior ability to induce antigen-specific T cell differentiation. Conclusion: These studies underline the importance of including ECM components in in vitro studies investigating DC biology and DC-T cell interaction. Within the context of antigen specific DC induced T cell proliferation, inclusion of ECM proteins could lead to development of more sensitive assays.Peer reviewedFinal Published versio

    The mannose receptor negatively modulates the Toll-like receptor 4–aryl hydrocarbon receptor–indoleamine 2,3-dioxygenase axis in dendritic cells affecting T helper cell polarization

    Get PDF
    Background: Dendritic cells (DCs) are key players in the induction and re-elicitation of TH2 responses to allergens. We have previously shown that different C-type lectin receptors on DCs play a major role in allergen recognition and uptake. In particular, mannose receptor (MR), through modulation of Toll-like receptor (TLR) 4 signaling, can regulate indoleamine 2,3-dioxygenase (IDO) activity, favoring TH2 responses. Interestingly, the aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor with an emerging role in immune modulation, has been implicated in IDO activation in response to TLR stimulation. Objective: Here we investigated how allergens and lectins modulate the TLR4-AhR-IDO axis in human monocyte-derived DCs. Methods: Using a combination of genomics, proteomics, and immunologic studies, we investigated the role of MR and AhR in IDO regulation and its effect on T helper cell differentiation. Results: We have demonstrated that LPS induces both IDO isoforms (IDO1 and IDO2) in DCs, with partial involvement of AhR. Additionally, we found that, like mannan, different airborne allergens can effectively downregulate TLR4-induced IDO1 and IDO2 expression, most likely through binding to the MR. Mannose-based ligands were also able to downregulate IL-12p70 production by DCs, affecting T helper cell polarization. Interestingly, AhR and some components of the noncanonical nuclear factor κB pathway were shown to be downregulated after MR engagement, which could explain the regulatory effects of MR on IDO expression. Conclusion: Our work demonstrates a key role for MR in the modulation of the TLR4-AhR-IDO axis, which has a significant effect on DC behavior and the development of immune responses against allergens

    The Glycosylation Pattern of Common Allergens: The Recognition and Uptake of Der p 1 by Epithelial and Dendritic Cells Is Carbohydrate Dependent

    Get PDF
    Allergens are initiators of both innate and adaptive immune responses. They are recognised at the site of entry by epithelial and dendritic cells (DCs), both of which activate innate inflammatory circuits that can collectively induce Th2 immune responses. In an attempt to have a better understanding of the role of carbohydrates in the recognition and uptake of allergens by the innate immune system, we defined common glycosylation patterns in major allergens. This was done using labelled lectins and showed that allergens like Der p 1 (Dermatophagoides pteronyssinus group 1), Fel d 1 (Felis domisticus), Ara h 1 (Arachis hypogaea), Der p 2 (Dermatophagoides pteronyssinus group 2), Bla g 2 (Blattella germanica) and Can f 1 (Canis familiaris) are glycosylated and that the main dominant sugars on these allergens are 1–2, 1–3 and 1–6 mannose. These observations are in line with recent reports implicating the mannose receptor (MR) in allergen recognition and uptake by DCs and suggesting a major link between glycosylation and allergen recognition. We then looked at TSLP (Thymic Stromal Lymphopoietin) cytokine secretion by lung epithelia upon encountering natural Der p 1 allergen. TSLP is suggested to drive DC maturation in support of allergic hypersensitivity reactions. Our data showed an increase in TSLP secretion by lung epithelia upon stimulation with natural Der p 1 which was carbohydrate dependent. The deglycosylated preparation of Der p 1 exhibited minimal uptake by DCs compared to the natural and hyperglycosylated recombinant counterparts, with the latter being taken up more readily than the other preparations. Collectively, our data indicate that carbohydrate moieties on allergens play a vital role in their recognition by innate immune cells, implicating them in downstream deleterious Th2 cell activation and IgE production

    The molecular basis of allergenicity

    No full text
    Allergens are mostly innocuous antigens that elicit powerful T helper cell type 2 (Th2) responses leading to hyper-immunoglobulin E (IgE) production and allergy. Research carried out over several years has highlighted the possible role of the inherent protease activity, surface features and glycosylation patterns of allergens in the engagement of a Th2 signalling pathway. It is thought that allergens possess common features and patterns that enable them to be recognized by innate immune defences as Th2-inducing antigens. These events are further amplified by proteolytically active allergens through digestion of cell surface molecules involved in regulating innate and adaptive immune functions, favouring Th2 responses. A greater understanding of the molecular features that make proteins allergenic will help define new therapeutic targets aimed at blocking allergen recognition and protease activity. © 2008 Elsevier Ltd. All rights reserved

    The role of lectins in allergic sensitization and allergic disease

    No full text
    Allergic diseases are a global public health issue affecting millions of persons around the world. However, full understanding of the molecular basis of this group of chronic inflammatory disorders remains rather elusive. Recently, the role of carbohydrates on allergens and their counterstructures on antigen-presenting cells (lectins) have been highlighted as crucial factors in allergen sensitization, which culminates in TH2 cell differentiation and the production of deleterious specific IgE antibodies. Here we review recent progress on the role of different lectins in patients with type I hypersensitivity or allergy, their interplay with other determinants of allergenicity, and ways of developing therapeutic modalities against newly identified targets. © 2013 American Academy of Allergy, Asthma &Immunology
    corecore