232 research outputs found

    Oxytocin administration suppresses hypothalamic activation in response to visual food cues

    Get PDF
    The aim of this study was to use functional neuroimaging to investigate whether oxytocin modulates the neural response to visual food cues in brain regions involved in the control of food intake. Twenty-four normal weight volunteers received intranasal oxytocin (24 IU) or placebo in a double-blind, randomized crossover study. Measurements were made forty-five minutes after dosing. On two occasions, functional MRI (fMRI) scans were performed in the fasted state; the blood oxygen level-dependent (BOLD) response to images of high-calorie foods versus low-calorie foods was measured. Given its critical role in eating behaviour, the primary region of interest was the hypothalamus. Secondary analyses examined the parabrachial nuclei and other brain regions involved in food intake and food reward. Intranasal oxytocin administration suppressed hypothalamic activation to images of high-calorie compared to low-calorie food (P = 0.0125). There was also a trend towards suppression of activation in the parabrachial nucleus (P = 0.0683). No effects of intranasal oxytocin were seen in reward circuits or on ad libitum food intake. Further characterization of the effects of oxytocin on neural circuits in the hypothalamus is needed to establish the utility of targeting oxytocin signalling in obesity

    Tumor infiltrating lymphocytes in ovarian cancer.

    Get PDF
    Several improvements in ovarian cancer treatment have been achieved in recent years, both in surgery and in combination chemotherapy with targeting. However, ovarian tumors remain the women's cancers with highest mortality rates. In this scenario, a pivotal role has been endorsed to the immunological environment and to the immunological mechanisms involved in ovarian cancer behavior. Recent evidence suggests a loss of the critical balance between immune-activating and immune-suppressing mechanisms when oncogenesis and cancer progression occur. Ovarian cancer generates a mechanism to escape the immune system by producing a highly suppressive environment. Immune-activated tumor infiltrating lymphocytes (TILs) in ovarian tumor tissue testify that the immune system is the trigger in this neoplasm. The TIL mileau has been demonstrated to be associated with better prognosis, more chemosensitivity, and more cases of optimal residual tumor achieved during primary cytoreduction. Nowadays, scientists are focusing attention on new immunologically effective tumor biomarkers in order to optimize selection of patients for recruitment in clinical trials and to identify relationships of these biomarkers with responses to immunotherapeutics. Assessing this point of view, TILs might be considered as a potent predictive immunotherapy biomarker

    Clinical value of patient-specific three-dimensional printing of congenital heart disease: Quantitative and qualitative assessments

    Get PDF
    Objective: Current diagnostic assessment tools remain suboptimal in demonstrating complex morphology of congenital heart disease (CHD). This limitation has posed several challenges in preoperative planning, communication in medical practice, and medical education. This study aims to investigate the dimensional accuracy and the clinical value of 3D printed model of CHD in the above three areas. Methods: Using cardiac computed tomography angiography (CCTA) data, a patient-specific 3D model of a 20-month-old boy with double outlet right ventricle was printed in Tango Plus material. Pearson correlation coefficient was used to evaluate correlation of the quantitative measurements taken at analogous anatomical locations between the CCTA images pre- and post-3D printing. Qualitative analysis was conducted by distributing surveys to six health professionals (two radiologists, two cardiologists and two cardiac surgeons) and three medical academics to assess the clinical value of the 3D printed model in these three areas. Results: Excellent correlation (r = 0.99) was noted in the measurements between CCTA and 3D printed model, with a mean difference of 0.23 mm. Four out of six health professionals found the model to be useful in facilitating preoperative planning, while all of them thought that the model would be invaluable in enhancing patient-doctor communication. All three medical academics found the model to be helpful in teaching, and thought that the students will be able to learn the pathology quicker with better understanding. Conclusion: The complex cardiac anatomy can be accurately replicated in flexible material using 3D printing technology. 3D printed heart models could serve as an excellent tool in facilitating preoperative planning, communication in medical practice, and medical education, although further studies with inclusion of more clinical cases are needed

    From monogenic to polygenic obesity: recent advances

    Get PDF
    The heritability of obesity and body weight in general is high. A small number of confirmed monogenic forms of obesity—the respective mutations are sufficient by themselves to cause the condition in food abundant societies—have been identified by molecular genetic studies. The elucidation of these genes, mostly based on animal and family studies, has led to the identification of important pathways to the disorder and thus to a deeper understanding of the regulation of body weight. The identification of inborn deficiency of the mostly adipocyte-derived satiety hormone leptin in extremely obese children from consanguineous families paved the way to the first pharmacological therapy for obesity based on a molecular genetic finding. The genetic predisposition to obesity for most individuals, however, has a polygenic basis. A polygenic variant by itself has a small effect on the phenotype; only in combination with other predisposing variants does a sizeable phenotypic effect arise. Common variants in the first intron of the ‘fat mass and obesity associated’ gene (FTO) result in an elevated body mass index (BMI) equivalent to approximately +0.4 kg/m² per risk allele. The FTO variants were originally detected in a genome wide association study (GWAS) pertaining to type 2 diabetes mellitus. Large meta-analyses of GWAS have subsequently identified additional polygenic variants. Up to December 2009, polygenic variants have been confirmed in a total of 17 independent genomic regions. Further study of genetic effects on human body weight regulation should detect variants that will explain a larger proportion of the heritability. The development of new strategies for diagnosis, treatment and prevention of obesity can be anticipated

    Leptin Activates Anorexigenic POMC Neurons through a Neural Network in the Arcuate Nucleus

    Get PDF
    The administration of leptin to leptin-deficient humans, and the analogous Lepob/Lepob mice, effectively reduces hyperphagia and obesity. But common obesity is associated with elevated leptin, which suggests that obese humans are resistant to this adipocyte hormone. In addition to regulating long-term energy balance, leptin also rapidly affects neuronal activity. Proopiomelanocortin (POMC) and neuropeptide-Y types of neurons in the arcuate nucleus of the hypothalamus7 are both principal sites of leptin receptor expression and the source of potent neuropeptide modulators, melanocortins and neuropeptide Y, which exert opposing effects on feeding and metabolism. These neurons are therefore ideal for characterizing leptin action and the mechanism of leptin resistance; however, their diffuse distribution makes them difficult to study. Here we report electrophysiological recordings on POMC neurons, which we identified by targeted expression of green fluorescent protein in transgenic mice. Leptin increases the frequency of action potentials in the anorexigenic POMC neurons by two mechanisms: depolarization through a nonspecific cation channel; and reduced inhibition by local orexigenic neuropeptide-Y/GABA (g-aminobutyric acid) neurons. Furthermore, we show that melanocortin peptides have an autoinhibitory effect on this circuit. On the basis of our results, we propose an integrated model of leptin action and neuronal architecture in the arcuate nucleus of the hypothalamu

    Associations between severity of obesity in childhood and adolescence, obesity onset and parental BMI: a longitudinal cohort study

    Get PDF
    Objective: To explore the relationship between severity of obesity at age 7 and age 15, age at onset of obesity, and parental body mass index (BMI) in obese children and adolescents. Design: Longitudinal cohort study.Subjects:Obese children (n231) and their parents (n462) from the Swedish National Childhood Obesity Centre. Methods: Multivariate regression analyses were applied with severity of obesity (BMI standard deviation score (BMI SDS)) and onset of obesity as dependent variables. The effect of parental BMI was evaluated and in the final models adjusted for gender, parental education, age at onset of obesity, severity of obesity at age 7 and obesity treatment. Results: For severity of obesity at age 7, a positive correlation with maternal BMI was indicated (P<0.05). Severity of obesity at this age also showed a strong negative correlation with the age at onset of obesity. Severity of obesity at age 15 was significantly correlated with both maternal and paternal BMI (P≥0.01). In addition, BMI SDS at age 15 differed by gender (higher for boys) and was positively correlated with severity of obesity at age 7 and negatively correlated with treatment. Also, a negative correlation was indicated at this age for parental education. No correlation with age at onset was found at age 15. For age at onset of obesity there was no relevant correlation with parental BMI. Children within the highest tertile of the BMI SDS range were more likely to have two obese parents. Conclusion: The impact of parental BMI on the severity of obesity in children is strengthened as the child grows into adolescence, whereas the age at onset is probably of less importance than previously thought. The influence of parental relative weight primarily affects the severity of childhood obesity and not the timing. © 2011 Macmillan Publishers Limited All rights reserved.link_to_subscribed_fulltex

    Selective cancer-germline gene expression in pediatric brain tumors

    Get PDF
    Cancer-germline genes (CGGs) code for immunogenic antigens that are present in various human tumors and can be targeted by immunotherapy. Their expression has been studied in a wide range of human tumors in adults. We measured the expression of 12 CGGs in pediatric brain tumors, to identify targets for therapeutic cancer vaccines. Real Time PCR was used to quantify the expression of genes MAGE-A1, MAGE-A2, MAGE-A3, MAGE-A4, MAGE-A6, MAGE-A10, MAGE-A12, MAGE-C2, NY-ESO-1 and GAGE-1,2,8 in 50 pediatric brain tumors of different histological subtypes. Protein expression was examined with immunohistochemistry. Fifty-five percent of the medulloblastomas (n = 11), 86% of the ependymomas (n = 7), 40% of the choroid plexus tumors (n = 5) and 67% of astrocytic tumors (n = 27) expressed one or more CGGs. Immunohistochemical analysis confirmed qPCR results. With exception of a minority of tumors, the overall level of CGG expression in pediatric brain tumors was low. We observed a high expression of at least one CGG in 32% of the samples. CGG-encoded antigens are therefore suitable targets in a very selected group of pediatric patients with a brain tumor. Interestingly, glioblastomas from adult patients expressed CGGs more often and at significantly higher levels compared to pediatric glioblastomas. This observation is in line with the notion that pediatric and adult glioblastomas develop along different genetic pathways
    corecore