1,755 research outputs found
Empirical Comparisons of Virtual Environment Displays
There are many different visual display devices used in virtual environment (VE) systems. These displays vary along many dimensions, such as resolution, field of view, level of immersion, quality of stereo, and so on. In general, no guidelines exist to choose an appropriate display for a particular VE application. Our goal in this work is to develop such guidelines on the basis of empirical results. We present two initial experiments comparing head-mounted displays with a workbench display and a foursided spatially immersive display. The results indicate that the physical characteristics of the displays, users' prior experiences, and even the order in which the displays are presented can have significant effects on performance
Adoption and impacts of zero tillage as a resource conserving technology in the irrigated plains of South Asia
Zero tillage / Rice / Wheat / Water conservation / India / Pakistan / Haryana / Punjab
Research challenges in 5G networks: a HetNets perspective
This paper highlights use cases, emerging machine type communication (MTC) technologies, ongoing research activities, and existing research challenges in 5G networks. 5G networks are faced with the following challenges: (i) handling large amounts of data, (ii) coping with different types of data traffic, i.e., human-type, machine-type, and combined-type (iii) connecting billions of machines, and (iv) severe resource limitations of devices. The ubiquitous nature of cellular networks make them the preferred choice for access networks, but a lack of communication resources is a problem. To address the resource scarcity issue, different wireless access networks may combine to form a heterogeneous network (HetNet) and hence become a single 5G network. For long-term success of 5G networks, we envision the following as important research outputs: (i) a scalable 5G network architecture that can handle a large number of human users and machines considering different constraints, (ii) a comprehensive quality of service (QoS) framework to satisfy heterogeneous users and machines requirements, (iii) a procedure for intelligent access network selection, and (iv) comprehensive inter-network handover mechanisms
RPL-based routing protocols for multi-sink wireless sensor networks
Recent studies demonstrate that the performance of a wireless sensor network (WSN) can be improved by deploying multiple sinks in the network. Therefore, in this paper we present different routing protocols for multi-sink WSNs based on the routing protocol for low-power and lossy networks (RPL). Our protocols use different routing metrics and objective functions (OFs). We use the available bandwidth, delay, MAC layer queue occupancy, and expected transmission count (ETX) as the tie-breaking metrics in conjunction with the shortest hop-count metric. Our OFs use the tie-breaking metrics on a greedy or end-to-end basis. Our simulation results demonstrate that the protocols based on the delay, buffer occupancy, and ETX metrics demonstrate best performance, increasing the packet delivery ratio by up to 25% and decreasing the number of retransmissions by up to 65%, compared to a version of the RPL protocol that only uses the hop-count metric. Another key insight is that, using the tie-breaking metrics on a greedy basis demonstrates a slight performance improvement compared to using the metrics on an end-to-end basis. Finally, our results also demonstrate that multiple sinks inside a WSN improve the RPL-based protocol performance
Evaluation of available bandwidth as a routing metric for delay-sensitive IEEE 802.15.4-based ad-hoc networks
In this paper, we evaluate available bandwidth as a routing metric for IEEE 802.15.4-based ad-hoc networks. The available bandwidth on a data forwarding path is an approximation of the forwarding path’s residual data relaying capacity. High available bandwidth on a data forwarding path implies low data traffic load on the path, therefore data flows may experience low delay and high packet delivery ratio (PDR). Our aim is to evaluate available bandwidth as a routing metric. We present different available-bandwidth-based routing protocols for IEEE 802.15.40-based networks, namely: end-to-end available-bandwidth-based routing protocol (ABR), available bandwidth and contention-aware routing protocol (ABCR), and shortest hop-count and available-bandwidth-based opportunistic routing protocol (ABOR). Moreover, we also present variants of ABR and ABCR capable of distributing a flow’s data packets on multiple paths by maintaining the top K downstream nodes (the downstream nodes that advertised best data forwarding paths towards a sink node) corresponding to each sink node in a routing table. We focus on both single-sink and multi-sink networks. We performed extensive simulations, and the simulation results demonstrate that the available bandwidth routing metric shows better results when combined with a routing metric that helps to limit a data forwarding path’s length, i.e., shortest hop-count or intra-flow contention count. For multi-path data forwarding towards the same sink node, and at high traffic volumes, the available bandwidth metric demonstrates best performance when combined with the shortest hop-count routing metric
HUBBLE PARAMETER MEASUREMENT CONSTRAINTS ON THE REDSHIFT OF THE DECELERATION-ACCELERATION TRANSITION, DYNAMICAL DARK ENERGY, AND SPACE CURVATURE
Citation: Farooq, O., Madiyar, F. R., Crandall, S., & Ratra, B. (2017). HUBBLE PARAMETER MEASUREMENT CONSTRAINTS ON THE REDSHIFT OF THE DECELERATION-ACCELERATION TRANSITION, DYNAMICAL DARK ENERGY, AND SPACE CURVATURE. Astrophysical Journal, 835(1), 11. doi:10.3847/1538-4357/835/1/26We compile an updated list of 38 measurements of the Hubble parameter H(z) between redshifts 0.07 <= z <= 2.36 and use them to place constraints on model parameters of constant and time-varying dark energy cosmological models, both spatially flat and curved. We use five models to measure the redshift of the cosmological deceleration-acceleration transition, z(da), from these H(z) data. Within the error bars, the measured zda are insensitive to the model used, depending only on the value assumed for the Hubble constant H-0. The weighted mean of our measurements is z(da) = 0.72 +/- 0.05 (0.84 +/- 0.03) for H-0 = 68 +/- 2.8 (73.24 +/- 1.74) km s(-1) Mpc(-1) and should provide a reasonably model-independent estimate of this cosmological parameter. The H(z) data are consistent with the standard spatially flat.CDM cosmological model but do not rule out nonflat models or dynamical dark energy models
Breadfruit starch-wheat flour noodles: preparation, proximate compositions and culinary properties
Proximate compositions, culinary and sensory properties of noodles prepared from proportionate combinations of breadfruit starch and wheat flour were investigated. Breadfruit starch (BS) isolated from matured breadfruit (Artocarpus altilis) was used to produce noodles in combination with hard red wheat flour (WF) at a ratio of 100% WF:0% BS, 80% WF:20% BS, 60% WF:40% BS, 40% WF:60% BS, 20% WF:80% BS. The protein, fat, ash, crude fibre and moisture contents of the Breadfruit starch-Wheat flour (BSWF) noodles prepared from the above blends ranged from 0.65 to 10.88%, 0.35 to 3.15%, 1.28 to 2.25%, 1.18 to 1.45% and 4.65 to 5.45%, respectively. The contents of protein, fat, ash and crude fibre increased as the percentage breadfruit starch decreased. However, values of moisture content did not follow the same trend, instead higher values were found for 100% BS:0% WF (5.35%) and 20% BS:80% WF (5.45%). The cooking yield of the BSWF noodles ranged from 21.02 (60% BS:40% WF) to 23.75 g (100% BS:0% WF), cooking loss ranged from 5.49 (20% BS:80% WF) to 9.19% (100% BS:0% WF), while swelling index ranged from 3.1 (20% BS:80% WF) to 3.4 (100% BS:0% WF). Throughout the study, noodles produced from blends of 20% breadfruit starch and 80% wheat flour showed superior proximate, culinary and sensory attributes
- …
