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ABSTRACT

We compile an updated list of 38 measurements of the Hubble parameter H(z) between redshifts 0.07�z�2.36
and use them to place constraints on model parameters of constant and time-varying dark energy cosmological
models, both spatially flat and curved. We use five models to measure the redshift of the cosmological
deceleration–acceleration transition, zda, from these H(z) data. Within the error bars, the measured zda are
insensitive to the model used, depending only on the value assumed for the Hubble constant H0. The weighted
mean of our measurements is zda=0.72±0.05 (0.84±0.03) for H0=68±2.8 (73.24±1.74) km s−1 Mpc−1

and should provide a reasonably model-independent estimate of this cosmological parameter. The H(z) data are
consistent with the standard spatially flat ΛCDM cosmological model but do not rule out nonflat models or
dynamical dark energy models.
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1. INTRODUCTION

In the standard scenario the currently accelerating cosmolo-
gical expansion is a consequence of dark energy dominating
the current cosmological energy budget; at earlier times
nonrelativistic (cold dark and baryonic) matter dominated the
energy budget and powered the decelerating cosmological
expansion.3 Initial quantitative observational support for this
picture came from “lower”-redshift Type Ia supernova (SN Ia)
apparent magnitude observations and “higher”-redshift cosmic
microwave background (CMB) anisotropy measurements.

More recently, cosmic chronometric and baryon acoustic
oscillation (BAO) techniques (see, e.g., Simon et al. 2005;
Moresco et al. 2012; Busca et al. 2013) have resulted in the
measurement of the cosmological expansion rate or Hubble
parameter, H(z), from the present epoch back to a redshift z
exceeding 2, higher than currently probed by SN Ia observa-
tions. This has resulted in the first mapping out of the
cosmological deceleration–acceleration transition, the epoch
when dark energy took over from nonrelativistic matter, and
the first measurement of the redshift of this transition (see, e.g.,
Farooq & Ratra 2013a; Farooq et al. 2013a; Moresco
et al. 2016).4

H(z) measurements have also been used to constrain some
more conventional cosmological parameters, such as the
density of dark energy and the density of nonrelativistic matter
(see, e.g., Samushia & Ratra 2006; Chen & Ratra 2011b;
Chimento & Richarte 2013; Farooq & Ratra 2013b; Ferreira
et al. 2013; Akarsu et al. 2014; Bamba et al. 2014; Capozziello
et al. 2014; Dankiewicz et al. 2014; Forte 2014; Gruber &
Luongo 2014; Chen et al. 2015; Meng et al. 2015; Alam et al.
2016; Guo & Zhang 2016; Mukherjee & Banerjee 2016),
typically providing constraints comparable to or better than

those provided by SN Ia data, but not as good as those from
BAO or CMB anisotropy measurements. More recently, H(z)
data have been used to measure the Hubble constant H0 (Verde
et al. 2014; Chen et al. 2016a), with the resulting H0 value
being more consistent with recent lower values determined
from a median statistics analysis of Huchra’s H0 compilation
(Chen & Ratra 2011a), from CMB anisotropy data (Hinshaw
et al. 2013; Sievers et al. 2013; Ade et al. 2015), from BAO
measurements (Aubourg et al. 2015; Ross et al. 2015;
L’Huillier & Shafieloo 2016), and from current cosmological
data and the standard model of particle physics with only three
light neutrino species (see, e.g., Calabrese et al. 2012).
In this paper, we put together an updated list of H(z)

measurements, compared to that of Farooq & Ratra (2013a),
and use this compilation to constrain the redshift of the
cosmological deceleration–acceleration transition, zda, as well
as other cosmological parameters. In the zda analysis here we
study more models than used by Farooq & Ratra (2013a) and
Farooq et al. (2013a), now also allowing for nonzero spatial
curvature in the XCDM parameterization of the dynamical dark
energy case and in the dynamical dark energy fCDM model
(Pavlov et al. 2013). The cosmological parameter constraints
derived here are based on more, as well as more recent, H(z)
data than were used by Farooq et al. (2015), and we also
explore a much larger range of parameter space in the nonflat
fCDM model than they did.
We find, from the likelihood analyses, that the zda values

measured from the H(z) data agree within the error bars in all
five models. They, however, depend more sensitively on the
value of H0 assumed in the analysis. These results are
consistent with those found in Farooq & Ratra (2013a) and
Farooq et al. (2013a). In addition, the binned H(z) data in
redshift space show qualitative visual evidence for the
deceleration–acceleration transition, independent of how they
are binned provided that the bins are narrow enough, in
agreement with that originally found by Farooq et al. (2013a).
Given that the measured zda are relatively model independent, it
is not unreasonable to average the measured values to
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3 For reviews of this picture, as well as of the alternate modified gravity
scenario, see Ratra & Vogeley (2008), Weinberg et al. (2014), Martin (2012),
Joyce et al. (2016), and references therein.
4 See Sutherland & Rothnie (2015) and Muthukrishna & Parkinson (2016) for
lower limits on this redshift derived using SN Ia and other data. For upper
limits on the transition redshift see Rani et al. (2015).
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determine a reasonable summary estimate. We find, for a
weighted mean estimate, zda=0.72±0.05 (0.84±0.03) if
we assume H0=68±2.8 (73.24±1.74) km s−1 Mpc−1.

The constraints on the more conventional cosmological
parameters, such as the density of dark energy, derived from
the likelihood analysis of the H(z) data here, indicate that these
data are quite consistent with the spatially flat ΛCDM model,
the standard model of cosmology where the cosmological
constant Λ is the dark energy. These H(z) data, however, do not
rule out the possibility of dynamical dark energy or space
curvature, especially when included simultaneously, in agree-
ment with the conclusions of Farooq et al. (2015). Currently
available SN Ia, BAO, growth factor, CMB anisotropy, and
other data can tighten the constraints on these parameters, and
it will be interesting to study these data sets in conjunction with
the H(z) data we have compiled here, but this is beyond the
scope of our paper. Near-future data will also result in
interesting limits (see, e.g., Podariu et al. 2001a; Pavlov
et al. 2012; Santos et al. 2013; Basse et al. 2014).

The outline of our paper is as follows. In the next section, we
discuss and tabulate our new H(z) data compilation. In
Section 3 we summarize how we bin the H(z) data in redshift
space and list binned H(z) data. Section 4 summarizes the
cosmological models we consider. In Section 5 we discuss how
we compute and measure the deceleration–acceleration trans-
ition redshift and tabulate numerical values of zda determined
from the H(z) measurements. Section 6 presents the constraints
on cosmological parameters, and we conclude in the last
section.

2. NEW HUBBLE PARAMETER DATA COMPILATION

In Table 1 we collect 38 Hubble parameter H(z) measure-
ments from Simon et al. (2005), Stern et al. (2010), Moresco
et al. (2012), Blake et al. (2012), Zhang et al. (2012), Font-
Ribera et al. (2014), Delubac et al. (2015), Moresco (2015),
Alam et al. (2016), and Moresco et al. (2016). These data are
plotted in the top panel of Figure 1.

These 38 H(z) measurements are not completely indepen-
dent. The three measurements taken from Blake et al. (2012)
are correlated with each other, and the three measurements of
Alam et al. (2016) also are correlated. Also, in these and other
cases, when BAO observations are used to measure H(z), one
has to apply a prior on the radius of the sound horizon,

ò=
¥

r c z dz H zd z s
d

( ) ( ), evaluated at the drag epoch zd, shortly
after recombination, when photons and baryons decouple. This
prior value of rd is generally derived from CMB observations.

Table 1 here is based on Table1 of Farooq & Ratra (2013a)
with the following modifications. We drop older Sloan Digital
Sky Survey galaxy clustering H(z) determinations from Chuang
& Wang (2013) in favor of the more recent measurements from
Alam et al. (2016). We have added the new Moresco et al.
(2016) measurements. We have dropped the older Busca et al.
(2013) Lyα forest measurement in favor of the newer Font-
Ribera et al. (2014) and Delubac et al. (2015) ones. We have
also added two new measurements from Moresco (2015).

There are many other compilations of H(z) data available in
the literature (see, e.g., Cai et al. 2015; Meng et al. 2015; Duan
et al. 2016; Nunes et al. 2016; Qi et al. 2016; Solà et al. 2016;
Yu & Wang 2016; Zhang & Xia 2016). We emphasize that our
compilation here does not include older, less reliable data, a
few with a lot of weight because of anomalously small
error bars.

3. BINNING OF HUBBLE PARAMETER DATA

There are two reasons to compute “average” H(z) values for
bins in redshift space. First, the weighted mean technique of
binning data can indicate whether the original unbinned data
have error bars inconsistent with Gaussianity, an important
consistency check. Second, data binned in redshift space can
more clearly visually illustrate trends as a function of redshift,
with the additional advantage of not having to assume a
particular cosmological model.
The 38 Hubble parameter measurements in Table 1 are

binned to ensure as many measurements as possible per bin,
while also retaining as many (narrow) redshift bins as possible.
The ideal case is 38 measurements in each of 38 bins. Here
we consider about 3–4, 4–5, 4–5–6, and 5–7 measurements per
bin. The last four measurements are binned by twos in all but

Table 1
Hubble Parameter vs. Redshift Data

z H(z) σH Reference
(km s−1 Mpc −1) (km s−1 Mpc −1)

0.070 69 19.6 5
0.090 69 12 1
0.120 68.6 26.2 5
0.170 83 8 1
0.179 75 4 3
0.199 75 5 3
0.200 72.9 29.6 5
0.270 77 14 1
0.280 88.8 36.6 5
0.352 83 14 3
0.380 81.5 1.9 10
0.3802 83 13.5 9
0.400 95 17 1
0.4004 77 10.2 9
0.4247 87.1 11.2 9
0.440 82.6 7.8 4
0.4497 92.8 12.9 9
0.4783 80.9 9 9
0.480 97 62 2
0.510 90.4 1.9 10
0.593 104 13 3
0.600 87.9 6.1 4
0.610 97.3 2.1 10
0.680 92 8 3
0.730 97.3 7 4
0.781 105 12 3
0.875 125 17 3
0.880 90 40 2
0.900 117 23 1
1.037 154 20 3
1.300 168 17 1
1.363 160 33.6 8
1.430 177 18 1
1.530 140 14 1
1.750 202 40 1
1.965 186.5 50.4 8
2.340 222 7 7
2.360 226 8 6

References. (1) Simon et al. 2005; (2) Stern et al. 2010; (3) Moresco et al.
2012; (4) Blake et al. 2012; (5) Zhang et al. 2012; (6) Font-Ribera et al. 2014;
(7) Delubac et al. 2015; (8) Moresco 2015; (9) Moresco et al. 2016; (10) Alam
et al. 2016.
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Figure 1. Top panel: 38 H(z) measurements of Table 1. All error bars are 1σ. The left (right) panel in the second row shows the binned H(z) data with 3 or 4 (4 or 5)
measurements per bin, combined using weighted mean statistics, listed in Table 2. In the last row, the left (right) panel shows binned H(z) data with 5 or 7 (4, 5, or 6)
measurements per bin, combined using weighted mean statistics, listed in Table 2. In all panels, there are five different colored solid (dot-dashed) best-fit model
prediction lines for the two H0 priors used in our analyses (see main text for details; NF stands for nonflat).
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the 4–5–6 measurement per bin case. In all cases, data points in
a given bin are not correlated with each other.

After binning the data, we use weighted mean statistics5 to
find a representative central estimate for each bin. Following
Podariu et al. (2001b), the weighted mean is given by
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where H(zi) and σi are the Hubble parameter and one standard
deviation of i=1, 2, 3,..., N measurements in the bin. We also
compute the weighted bin redshift using
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A goodness of fit, χ2, can be found for each bin where the
reduced χ2 is

åc
s

=
-

-
n

=N

H z H z1

1
. 4

i

N
i

i

2

1

2

2

[ ( ) ( )] ( )

The number of standard deviations that χν deviates from unity
(the expected value) is given by

c= - -s nN N1 2 1 . 5∣ ∣ ( ) ( )

A large Nσ can be the result of non-Gaussian measurements,
the presence of unaccounted-for systematic errors, or correla-
tions between measurements. Table 2 lists the weighted mean
results for the binned H(z) measurements.

The last column of Table 2 shows reasonably small Nσ for all
binnings, thus suggesting that the error bars of the H(z) data of
Table 1 are not inconsistent with Gaussianity. As in Farooq
et al. (2013a), we find that the cosmological constraints that
follow from the weighted mean binned data are almost identical
to those derived using the unbinned data, while the median
statistics binned data typically result in somewhat weaker
constraints. A possible reason for this could be that some of the
unbinned H(z) data error bars might be a bit larger than they
really should be. This would be consistent with the low reduced
χ2 shown in the last line of Table1 in Chen et al. (2016a).

The binned data are plotted in the four lower panels of
Figure 1. It is reassuring that, independent of the binning used, all
the binned data sets show clear visual qualitative evidence for the
cosmological deceleration–acceleration transition, as in Farooq
et al. (2013a). This is model-independent qualitative evidence for
the existence of the cosmological deceleration–acceleration

transition. We shall see, in Section 5, that all cosmological
models we use in the analysis of the H(z) data to measure zda
result in zda values that overlap within the error bars (for a given
H0 prior). This is additional model-independent evidence for the
presence of the deceleration–acceleration transition.

4. COSMOLOGICAL MODELS

In this section we briefly describe the five models we use to
analyze the H(z) data. These are the ΛCDM model, which

Table 2
Weighted Mean Results for 38 Redshift Measurements

Bin N za H(z) H(z) (1σ Range) H(z) (2σ Range) Nσ

(km s−1

Mpc −1)
(km s−1

Mpc −1)
(km s−1

Mpc −1)

3 or 4 Measurements per Bin

1 3 0.0892 69.0 59.4–78.5 49.9–88.0 2.0
2 4 0.185 76.0 73.1–78.9 70.2–81.8 1.1
3 3 0.309 80.6 71.0–90.2 61.5–99.7 1.5
4 4 0.381 81.5 79.7–83.4 77.9–85.2 1.2
5 3 0.438 85.8 80.1–91.5 74.3–97.3 1.0
6 3 0.509 90.0 88.1–91.9 86.3–93.7 0.53
7 3 0.609 96.5 94.5–98.4 92.6–100 0.22
8 3 0.720 96.6 91.8–101 87.0–106 0.71
9 4 0.929 129 118–140 108–151 0.066
10 4 1.43 158 149–167 140–176 0.047
11 2 1.83 196 165–227 133–259 1.1
12 2 2.35 224 219–229 213–234 0.88

4 or 5 Measurements per Bin

1 2 0.0846 69.0 58.8–79.2 48.5–89.5 1.4
2 5 0.184 75.9 73.1–78.8 70.2–81.7 1.4
3 5 0.377 81.5 79.7–83.3 77.8–85.2 2.3
4 5 0.427 84.6 79.8–89.4 75.0–94.2 1.1
5 5 0.518 90.1 88.3–91.8 86.6–93.6 0.66
6 4 0.628 97.2 95.3–99.1 93.3–101 1.2
7 4 0.929 129 118–140 108–151 0.066
8 4 1.43 158 149–167 140–176 0.047
9 2 1.83 196 165–227 133–259 1.1
10 2 2.35 224 219–229 213–234 0.88

4, 5, or 6 Measurements per Bin

1 4 0.137 77.2 71.1–83.3 64.9–89.5 0.85
2 5 0.192 75.2 72.1–78.2 69.1–81.2 2.3
3 5 0.380 81.6 79.7–83.4 77.9–85.2 1.5
4 6 0.502 89.6 87.8–91.4 86.1–93.1 1.1
5 4 0.613 96.2 94.3–98.1 92.4–100 0.10
6 6 0.787 106 101–112 95.8–117 1.1
7 6 1.46 161 153–170 144–178 0.16
8 2 2.35 224 219–229 213–234 0.88

5 or 7 Measurements per Bin

1 5 0.166 75.7 72.3–79.0 69.0–82.4 1.2
2 7 0.355 80.7 79.0–82.4 77.2–84.2 1.6
3 5 0.427 84.6 79.8–89.4 75.0–94.2 1.1
4 5 0.518 90.1 88.3–91.8 86.6–93.6 0.66
5 7 0.633 97.7 95.8–99.6 93.9–102 0.55
6 5 1.37 158 149–166 141–174 0.32
7 2 1.83 196 165–227 133–259 1.1
8 2 2.35 224 219–229 213–234 0.88

Note.
a Weighted mean of z values of measurements in the bin.

5 We also used median statistics to find central estimates, where the median is
the value for which there is a 50% chance of finding a measurement above and
below it. Since median statistics does not make use of individual measurement
errors, the resultant central estimate error is larger than that for weighted mean
statistics. For discussions and applications of median statistics, see Gott et al.
(2001), Chen & Ratra (2003), Hodge et al. (2009), Crandall & Ratra (2014),
Crandall et al. (2015), Ding et al. (2015), Crandall & Ratra (2015), and Zheng
et al. (2016). As in Farooq et al. (2013a) for the earlier H(z) data tabulated in
Farooq & Ratra (2013a), all median statistics analysis results look reasonable,
and since the weighted mean results are also all reasonable and more
constraining, going forward we use only weighted mean results.
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allows for spatial curvature and where dark energy is the
cosmological constant Λ (Peebles 1984), and the fCDM
model, in which dynamical dark energy is represented by a
slowly evolving scalar field f (Peebles & Ratra 1988; Ratra &
Peebles 1988). We also consider an incomplete, but popular,
parameterization of dynamical dark energy, XCDM, where
dynamical dark energy is represented by an X-fluid. In the
fCDM and XCDM cases, we consider both spatially flat and
nonflat models (Pavlov et al. 2013).

In the ΛCDM model with spatial curvature the Hubble
parameter is

= W + + W
+ - W - W +

L

L

pH z H H z

z

; , 1

1 1 , 6
m

m

0 0 0
3

0
2 1 2

( ) [ ( )
( )( ) ] ( )

where we have made use of W = - W - WL1K m0 0 to
eliminate the current value of the space curvature energy
density parameter in favor of the current value of the
nonrelativistic matter energy density parameter, Ωm0, and
the cosmological constant energy density parameter, ΩΛ. Here
= W WLp ,m0( ) are the two cosmological parameters that

conventionally characterize ΛCDM, and H0 is the value of the
Hubble parameter at the present time and is called the Hubble
constant.

It has become fashionable to parameterize dynamical dark
energy as a spatially homogeneous X-fluid, with a constant
equation-of-state parameter, w r= < -p 1 3X X X (here pX and
ρX are the pressure and energy density of the X-fluid,
respectively). For the spatially flat XCDM parameterization,
usingW = - W1X m0 0 (where ΩX0 is the current value of the X-
fluid energy density parameter), we have

= W +
+ - W + w+

pH z H H z

z

; , 1

1 1 . 7
m

m

0 0 0
3

0
3 1 1 2X

( ) [ ( )
( )( ) ] ( )( )

In this spatially flat case the two cosmological parameters are
w= Wp ,m X0( ). The XCDM parameterization is incomplete as

it cannot describe the evolution of energy density inhomogene-
ities. In the nonflat XCDM parameterization case, WK0 is the
third free parameter and

= W + + - W - W
´ + + W +w+

pH z H H z

z z

; , 1 1

1 1 , 8
m m K
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3
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where the three cosmological parameters are =p
wW W, ,m X K0 0( ). fCDM is the simplest, most complete, and

most consistent dynamical dark energy model. Here dark energy
is modeled as a slowly rolling scalar field f with, e.g., an inverse-
power-law potential energy density f k f= a-V m 2p

2( ) , where
mp is the Planck mass and α is a non-negative parameter that
determines the coefficient κ(mp, α) (Peebles & Ratra 1988). The
equation of motion of the scalar field is

f f
k
a f+ - =a- +a

a
m¨ 3

2
0, 9p

2 1˙ ˙ ( )( )

where an overdot represents a time derivative and a is the scale
factor. For the spatially flat fCDM model

a= W + + WfpH z H H z z; , 1 , , 10m0 0 0
3 1 2( ) [ ( ) ( )] ( )

where the time-dependent scalar field energy density parameter
is

a f k fW = +f
a-z

H
m,

1

12
. 11p
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2
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In this case the two cosmological parameters are
a= Wp ,m0( ). In the nonflat fCDM model

a= W + + W

+ W +
fpH z H H z z

z

; , 1 ,

1 , 12

m

K

0 0 0
3

0
2 1 2

( ) [ ( ) ( )
( ) ] ( )

and the three cosmological parameters are a= W Wp , ,m K0 0( ).
Solving the coupled differential equations of motion allows

for a numerical computation of the Hubble parameter
pH z H; ,0( ) (Peebles & Ratra 1988; Samushia 2009; Far-

ooq 2013; Pavlov et al. 2013).6

In Section 6 we use these expressions for the Hubble
parameter in conjunction with the H(z) measurements in Table 1
to constrain the cosmological parameters of these models. In our
analyses here we study the following parameter ranges:
0�Ωm0�1, 0�ΩΛ�1.4, −2�ωX�0, 0�α�5, and
−0.7�ΩK0�0.7 for nonflat XCDM and −0.4�ΩK0�0.4
for nonflat fCDM (which is double the ΩK0 range used in Farooq
et al. 2015).

5. COSMOLOGICAL DECELERATION–ACCELERATION
TRANSITION REDSHIFT

At the current epoch, dark energy dominates the cosmolo-
gical energy budget and accelerates the cosmological expan-
sion. At earlier times nonrelativistic (baryonic and cold dark)
matter dominated the energy budget and the cosmological
expansion decelerated. The cosmological deceleration–accel-
eration transition redshift, zda, is defined as the redshift at which
=ä 0, in the cosmological model under consideration. ä is

proportional to the active gravitational mass density, the sum of
the energy densities and three times the pressure of the
constituents.
For ΛCDM, setting =ä 0, we find

⎛
⎝⎜

⎞
⎠⎟=

W
W

-Lz
2

1. 13
m

da
0

1 3
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For the case of the spatially flat XCDM parameterization
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while for nonflat XCDM
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For the spatially flat fCDM model, defining the time-
dependent equation-of-state parameter for the scalar field

w
f f

f f
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+
f z
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V
, 16

1

2

2

1

2

2
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6 For discussions of observational constraints on the fCDM model see, e.g.,
Podariu & Ratra (2000), Chen & Ratra (2004), Samushia & Ratra (2010),
Samushia et al. (2010), Campanelli et al. (2012), Pavlov et al. (2014),
Avsajanishvili et al. (2014, 2015), Gosenca & Coles (2015), Lima et al. (2016),
and Chen et al. (2016b).
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the redshift zda (Ωm0, α) is determined by numerically solving

a wW + + W + =f fz z z1 , 1 3 0, 17m0 da
3

da da( ) ( )[ ( )] ( )

where W = - Wf 1 m0 0. In the nonflat fCDM model zda (Ωm0,
α, ΩK0) is determined by numerically solving the same
equation, but now setting W = - W - Wf 1 m K0 0 0.

To compute the expected values á ñzda and á ñzda
2 for the two-

parameter models, we use
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Here  p( ) is the H(z) data likelihood function after
marginalization over the Gaussian H0 prior in the two-
parameter model under consideration, as explained in Farooq
et al. (2013b, 2015), but this time accounting for the
nondiagonal correlation matrices of the Blake et al. (2012)
and Alam et al. (2016) measurements, which have a small
effect.  p( ) depends only on the model parameters W WL,m0( )
for ΛCDM, wW ,m X0( ) for flat XCDM, and aW ,m0( ) for flat
fCDM. The generalization for the three-parameter models is
straightforward. The standard deviation in zda is computed from
the standard formula s = á ñ - á ñz zz da

2
da

2
da . The results of this

computation are summarized in Table 3.
Table 3 shows best-fit cosmological parameter values and

the corresponding minimum χ2 for the five different cosmo-
logical models and for the two Gaussian H0 priors. The second-
to-last column in Table 3 shows the average deceleration–
acceleration transition redshift with corresponding standard
deviation for each model. It is very reassuring that the zda
values we measure in the five different models (for a given H0

prior) overlap reasonably well. (The main effect on the
measured zda value is the assumed H0 prior value.) Given that
the measured zda are almost independent of the other model
parameters, within the errors, we may conclude that to leading
order we have measured a model-independent zda value.
However, it is useful to have a single summary value for this
cosmological parameter.

By taking the simple average of the penultimate column zda
values and computing the population standard deviation for the
five values in this column, we find zda=0.71±0.03 (0.82±
0.06) for s = H 68 2.8H0 0 (73.24± 1.74) km s−1Mpc−1.
Using all 10 zda values in the penultimate column of Table 3, we
find zda=0.76±0.07.

A more reliable summary value of the deceleration–
acceleration transition redshift is determined from a weighted
mean analysis. Using Equations (1)–(3), we find
zda=0.72±0.05 (0.84± 0.03) for s = H 68 2.8H0 0

(73.24± 1.74) km s−1 Mpc−1, and using all 10 values in the
penultimate column of Table 3, we get zda=0.80±0.02. By
looking at the fourth and fifth columns of Table 3, it appears
that all five models discussed here fit better with the lower
value of H0, while the uncertainty in zda is more sensitive
to sH0.

These results are listed in Table 4 and compared with the
previously computed summary values of Farooq et al. (2013a).
Note that only three models (ΛCDM, flat XCDM, and flat

fCDM) were considered in Farooq et al. (2013a). Here we also
consider nonflat XCDM and nonflat fCDM. We see that there
is good agreement between the old and new weighted mean zda
for h = 0.68, less so for h = 0.7324. From Table 4 we see that
for a given H0 the weighted average values of zda for all five
models and for the two sets of (non-nested) triplets of models
agree to within the error bars.

6. COSMOLOGICAL PARAMETER CONSTRAINTS

In this section, we use the 38 Hubble parameter measure-
ments (over 0.07�z�2.36) listed in Table 1 to determine
constraints on the parameters of the five different cosmological
models. We use the technique of Farooq et al. (2015) to find
constraints on (Ωm0, ΩΛ) in the ΛCDM model, (Ωm0, ωX) for
the spatially flat XCDM parameterization, (Ωm0, α) in the
spatially flat fCDM model, wW W, ,m X K0 0( ) for the XCDM
parameterization with space curvature, and aW W, ,m K0 0( ) in
the fCDM model with space curvature. For the H(z)
cosmological test, cosmological parameter constraints depend
on the value of the Hubble constant (see, e.g., Samushia et al.
2007). We use two different Gaussian priors for the Hubble
constant; the lower value is 68±2.8 km s−1 Mpc−1, and the
higher is 73.24±1.74 km s−1 Mpc−1. The lower value is from
a median statistics analysis (Gott et al. 2001) of 553
measurements of H0 tabulated by Huchra (Chen &
Ratra 2011a). It agrees with earlier median statistics estimates
of H0 from smaller compilations (Gott et al. 2001; Chen et al.
2003) and is consistent with a number of other recent
determinations of H0 from Wilkinson Microwave Anisotropy
Probe, Atacama Cosmology Telescope, and Planck CMB
anisotropy data (Hinshaw et al. 2013; Sievers et al. 2013; Ade
et al. 2015; Addison et al. 2016), from BAO measurements
(Aubourg et al. 2015; Ross et al. 2015; L’Huillier & Shafieloo
2016), and from Hubble parameter data (Chen et al. 2016a), as
well as with what is expected in the standard model of particle
physics with only three light neutrino species given current
cosmological data (see, e.g., Calabrese et al. 2012). The higher
value is a relatively local measurement, based on Hubble Space
Telescope data (Riess et al. 2016). It is consistent with other
recent local measurements of H0 (Riess et al. 2011; Freedman
et al. 2012; Efstathiou 2014).
We compute the likelihood function  p( ) for the models

under discussion using Equation(18) of Farooq et al. (2013b)
for the ranges of the cosmological parameters listed at the end
of Section 4. We need these likelihood functions for the zda
computation of the previous section, which is the main result of
the paper. In this section, we use these likelihood functions to
constrain cosmological parameters such as the dark energy
density.
For the two-parameter models, maximizing the likelihood

function  p( ) is performed by minimizing the corresponding
c º -p p2 ln2 ( ) [ ( )] following the procedure of Farooq et al.

(2015). The corresponding minimum values of χ2 and best-fit
parameter values for the two-parameter models are summarized
in Table 3. The 1σ, 2σ, and 3σ confidence contours are
computed following the procedure of Farooq et al. (2015), and
results are shown in Figure 2. The generalization of this
procedure for the three-parameter models is straightforward,
and best-fit three-dimensional parameter values and minimum
χ2 are also summarized in Table 3.
For the three-parameter models we next compute three two-

dimensional likelihood functions by marginalizing the three-
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Table 3
Deceleration–Acceleration Transition Redshiftsa

Model h Priorb BFc cmin
2 sz zda da

d sz zda da
e

0.68±0.028 Ωm0=0.23 22.4 0.723±0.089 0.690±0.096

ΛCDM
ΩΛ=0.60

0.7324±0.0174 Ωm0=0.25 24.2 0.832±0.055 0.781±0.067
ΩΛ=0.78

0.68±0.028 Ωm0=0.26 22.5 0.753±0.091 0.677±0.097

Flat XCDM
ωX=−0.86

0.7324±0.0174 Ωm0=0.24 23.9 0.813±0.062 0.696±0.082
ωX=−1.06

0.68±0.028 Ωm0=0.27 22.9 0.703±0.104 0.724±0.148

Flat fCDM
α=0.50

0.7324±0.0174 Ωm0=0.25 25.2 0.885±0.056 0.850±0.116
α=0

0.68±0.028 Ωm0=0.15 21.9 0.684±0.117 L
ωX=−1.68

Nonflat XCDM
ΩK0=0.45

0.7324±0.0174 Ωm0=0.13 20.3 0.709±0.090 L
ωX=−2

ΩK0=0.41

0.68±0.028 Ωm0=0.23 22.6 0.690±0.118 L
α=0

Nonflat fCDM
ΩK0=0.18

0.7324±0.0174 Ωm0=0.25 25.0 0.853±0.053 L
α=0

ΩK0=−0.03

Notes.
a Estimated using the unbinned data of Table 1.
b Hubble constant in units of 100 km s−1 Mpc−1.
c Best-fit parameter values.
d Computed using Equations (13)–(18) of this work.
e The deceleration–acceleration transition redshift in the model, as computed in Table 1 of Farooq et al. (2013a). Note that the best-fit cosmological parameter values
found in Farooq et al. (2013a) differ from those found here and listed in this table.

Table 4
zda Summary

Averages
h±σh=0.68±0.028a h±σh=0.7324±0.0174a Totalb

Herec Previousd Herec Previousd Herec Previousd

Simple averages 0.71±0.03 0.70±0.02 0.82±0.06 0.78±0.06 0.76±0.07 0.74±0.06

Weighted averages 0.72±0.05 0.69±0.06 0.84±0.03 0.76±0.05 0.80±0.02 0.74±0.04

Simple averages from 0.73±0.02 L 0.84±0.03 L 0.78±0.06 L
ΛCDM and flat models

Weighted averages from 0.73±0.05 L 0.85±0.03 L 0.81±0.03 L
ΛCDM and flat models

Simple averages from 0.70±0.02 L 0.80±0.06 L 0.75±0.07 L
nonflat models

Weighted averages from 0.70±0.06 L 0.82±0.04 L 0.79±0.03 L
nonflat models

Notes.
a Hubble constant in units of 100 km s−1 Mpc−1.
b Combination of results from both H0 priors.
c Estimated using the unbinned data of 38 H(z) measurements from Table 1.
d Results from Farooq et al. (2013a). We have corrected typos in that paper here.
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dimensional likelihood function over each of the three
parameters (assuming flat priors) in turn. These three two-
dimensional likelihood functions are maximized as above, and
the corresponding best-fit parameter values and minimum χ2

are listed in Table 5. The confidence contours for these two-
dimensional likelihood functions are shown in Figure 3 for the

nonflat XCDM parameterization and in Figure 4 for the nonflat
fCDM model.
To get two one-dimensional likelihood functions from each

of the two-dimensional likelihood functions, we marginalize
(with a flat prior) over each parameter in turn. We then
determine the best-fit parameter values by maximizing each
one-dimensional likelihood function and compute 1σ and 2σ
intervals for each parameter in each model and for both H0

priors. The best-fit parameter values and 1σ and 2σ intervals
are given in Table 6 for the two-parameter models and in
Table 7 for the three-parameter models.
The best-fit (two- and three-dimensional) model predictions

are shown in Figure 1, for the five different cosmological models,
ΛCDM in red, flat XCDM in blue, flat fCDM in green, nonflat
XCDM in orange, and nonflat fCDM in brown, for the two H0

priors, with s = H 68 2.8H0 0 km s−1Mpc−1 in solid lines
and s = H 73.24 1.74H0 0 km s−1Mpc−1 in dot-dashed
lines.
While the main purpose of our paper was to improve on the

characterization of the deceleration–acceleration transition
studied in Farooq & Ratra (2013a) and Farooq et al. (2013a),
we see from Figure 2 and the left panels of Figures 3 and 4 that
the H(z) data by themselves indicate that the cosmological
expansion is currently accelerating.
From these figures, it is clear that the H(z) data of Table 1 are

very consistent with the standard spatially flat ΛCDM
cosmological model, although even for the two-parameter
model constraint contours shown in Figure 2 there are a large
range of dynamical dark energy models and spatially curved
models that are consistent with the data. In Figures 3 and 4 for
the nonflat dynamical dark energy models, it is clear that
allowing for nonzero space curvature considerably broadens
the dynamical dark energy options and vice versa. It is
interesting to note that in the nonflat fCDM model Chen et al.
(2016b) find that the cosmological data bound on the sum of
neutrino masses is considerably weaker than if the model were
spatially flat.
While the error bars are large, it is curious that Table 7

entries show that the nonflat XCDM parameterization mildly
favors open spatial hypersurfaces while the nonflat fCDM
model mildly prefers closed ones.

Figure 2. The three panels (from left to right) show 1σ, 2σ, and 3σ red solid (blue dot-dashed) constraint contours for the lower (higher) H0 prior, for ΛCDM, flat
XCDM, and flat fCDM, respectively. Red filled (blue open) circles are the best-fit points for the lower (higher) H0 prior. The straight dashed lines in the left and
middle panels correspond to spatially flat ΛCDM models, the dotted lines demarcate zero-acceleration models, and the shaded area in the upper left-hand corner of the
left panel is the region for which there is no big bang. For quantitative parameter best-fit values and ranges see Tables 3 and 6.

Table 5
Two-dimensional Best-fit Parameters for Three-parameter, Nonflat Models

Model h Priora
Marginalized
Parameter BFb cmin

2

0.68±0.028 ΩK0 Ωm0=0.38 25.3
ωX=−0.64

ωX Ωm0=0.16 22.5
ΩK0=0.43

Ωm0 ωX=−1.80 27.3

Nonflat XCDM
ΩK0=0.47

0.7324±0.0174 ΩK0 Ωm0=0.13 25.0
ωX=−2

ωX Ωm0=0.15 22.1
ΩK0=0.39

Ωm0 ωX=−2 26.8
ΩK0=0.41

0.68±0.028 ΩK0 Ωm0=0.28 25.7
α=1.33

α Ωm0=0.26 22.4
ΩK0=−0.02

Ωm0 α=0.01 28.7

Nonflat fCDM
ΩK0=0.19

0.7324±0.0174 ΩK0 Ωm0=0.25 29.0
α=0.01

α Ωm0=0.28 26.6
ΩK0=−0.19

Ωm0 α=0.01 31.6
ΩK0=−0.04

Notes.
a Hubble constant in units of 100 km s−1 Mpc−1.
b Best-fit parameter values.
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Figure 3. The three panels (from left to right) show 1σ, 2σ, and 3σ two-dimensional constraint contours for the three-parameter, nonflat XCDM parameterization,
computed after marginalizing over each of the three parameters in turn. Red (blue) solid lines are for the lower (higher) H0 prior. Left, middle, and right panels
correspond to marginalizing over ΩK0, ωX, and Ωm0, respectively. Red (blue) filled circles are the best-fit points for the lower (higher) H0 prior. Red (blue) dot-dashed
lines in the left panel are 1σ, 2σ, and 3σ constraint contours for the lower (higher) H0 prior for spatially flat XCDM (see the middle panel of Figure 2). For quantitative
parameter best-fit values and ranges see Tables 3, 5, and 7.

Figure 4. The three panels (from left to right) show 1σ, 2σ, and 3σ two-dimensional constraint contours for the three-parameter, nonflat fCDM model, computed after
marginalizing over each of the three parameters in turn. Red (blue) solid lines are for the lower (higher) H0 prior. Left, middle, and right panels correspond to
marginalizing over ΩK0, α, and Ωm0, respectively. Red (blue) filled circles are the best-fit points for the lower (higher) H0 prior. Red (blue) dot-dashed lines in the left
panel are s1 , 2σ, and 3σ constraint contours for the lower (higher) H0 prior for the spatially flat fCDM model (see the right panel of Figure 2). For quantitative
parameter best-fit values and ranges see Tables 3, 5, and 7.

Table 6
One-dimensional Best-fit Parameters and Intervals for Two-parameter Models

Model h Priora Marginalization BFb 1σ Intervals 2σ Intervals
Range

ΛCDM 0.68±0.028 0�ΩΛ�1.4 0.23 0.19�Ωm0�0.27 0.15�Ωm0�0.30
0�Ωm0�1 0.58 0.46�ΩΛ�0.69 0.32�ΩΛ�0.80

0.7324±0.0174 0�ΩΛ�1.4 0.26 0.22�Ωm0�0.29 0.19�Ωm0�0.32
0�Ωm0�1 0.79 0.71�ΩΛ�0.86 0.63�ΩΛ�0.93

Flat XCDM 0.68±0.028 −2�ωX�0 0.27 0.25�Ωm0�0.29 0.22�Ωm0�0.31
0�Ωm0�1 −0.85 −0.98�ωX�−0.73 −1.11�ωX�−0.59

0.7324±0.0174 −2�ωX�0 0.25 0.23�Ωm0�0.26 0.22�Ωm0�0.28
0�Ωm0�1 −1.07 −1.17�ωX�−0.98 −1.27�ωX�−0.89

Flat fCDM 0.68±0.028 0�α�5 0.26 0.23�Ωm0�0.28 0.20�Ωm0�0.30
0�Ωm0�1 0.53 0.09�α�1.29 0�α�2.9

0.7324±0.0174 0�α�5 0.24 0.23�Ωm0�0.26 0.21�Ωm0�0.28
0�Ωm0�1 0 0�α�0.15 0�α�0.46

Notes.
a Hubble constant in units of 100 km s−1 Mpc−1.
b Best-fit parameter values.
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7. CONCLUSION

From the new list of H(z) data we have compiled, we find
evidence for the cosmological deceleration–acceleration trans-
ition to have taken place at a redshift zda=0.72±0.05
(0.84±0.03), depending on the value of H0=68±2.8
(73.24±1.74) km s−1 Mpc−1, but otherwise only mildly
dependent on other cosmological parameters. In addition, the
binned H(z) data in redshift space show qualitative visual
evidence for the deceleration–acceleration transition, indepen-
dent of how they are binned provided that the bins are narrow
enough, in agreement with that originally found by Farooq
et al. (2013a). These H(z) data are consistent with the standard
spatially flat ΛCDM cosmological model but do not rule out
nonzero space curvature or dynamical dark energy, especially
in models that allow for both. Other data, such as currently
available SN Ia, BAO, growth factor, or CMB anisotropy data,
can tighten the constraints on these parameters (see, e.g.,
Farooq et al. 2015), and it is of interest to study how the other
data constrain parameters when used in conjunction with the H
(z) data we have compiled here.
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from the Department of Physical Sciences, Embry-Riddle
Aeronautical University. S.C. and B.R. were supported in part
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