18 research outputs found

    Resistive Guiding of Fast Electrons in High-Intensity Laser-Plasma Interactions

    Get PDF
    This thesis presents the first experimental investigations into resistive guiding of fast electrons using conically structured targets. Two experiments are presented in which a combination of experimental diagnostics and simulations are used to examine the performance of resistively generated magnetic fields in reducing the fast electron divergence. A critical aspect of this work is the deployment of a novel front surface imaging system to determine the location of the laser-target interaction. Significant rear surface heating is inferred in both experimental campaigns using shadowgraphy and one-dimensional hydrodynamic simulations in HYADES. Conically structured targets are shown to reach temperatures of up to 200eV; a significant enhancement at greater depth and reduced laser energies than results reported in the literature. Analysis of the laser focal spot and three-dimensional hybrid simulations in ZEPHYROS show how an astigmatic beam with significant energy outside of the main peak can enhance the confinement of electrons and improve the volumetric heating of the target. Proton diagnostics are used to determine the performance of conically structured targets. Significantly, an enhancement in peak proton energy is recorded for cones with opening half-angles of approximately 10 degrees. We suggest a mechanism underpinning these results and how the ability of the cone targets to reduce the fast electron divergence is sensitive to the specific target geometries implemented on the experiments. The fast electron beam that escapes the rear surface is observed to filament using a combination of image plate (IP) and coherent transition radiation (CTR) diagnostics. Three-dimensional hybrid simulations using ZEPHYROS present similar filamentation and show how the observation of the break-up of the electron beam does not significantly inhibit the resistive guiding mechanism

    Amphibole: A major carrier of helium isotopes in crustal rocks

    Get PDF
    The first evidence for a specific role of amphiboles in He isotope balance of crustal rocks was presented in early contributions by Gerling et al. (1971, 1976). Since then it was shown that 4He and 3He concentrations in amphiboles generally exceed those in the host rock samples. Recently amphibole was considered as an important carrier of noble gases and other volatiles components in the course of their subduction into the mantle. This paper presents new data on the balance and mobility of noble gas isotopes and major gas constituents in amphibole separates in order to understand sources and evolution of volatile components of 2666 Ma old alkaline granites from Ponoy massif (Kola Peninsula), which underwent metamorphism 1802 Ma ago.In the amphiboles 3He, 4He and 40Ar* were dominantly produced in situ due to radioactive decay of the parent isotopes and associated nuclear reactions. A small fraction of He (≈ 3% of the total) is liberated by crushing and shows 3He/4He ratio indistinguishable from that found by total extraction. The fraction of trapped 40Ar* amounts to ≈ 40%; both these fractions presumably occupy fluid inclusions and show rather low 4He/40Ar* ≈ 0.1, a factor of ≈ 150 below the production ratio (calculated assuming no loss / gain of the species has happened since the time of metamorphism).3He has been better preserved in amphiboles compared with 4He: the retention parameter (measured amount of He / totally produced amount) for 3He (≈ 0.4) exceeds that for 4He (≈ 0.15).He extraction by fast and slow linear heating of amphiboles resulted in different release patterns. The fast heating (within 12 to 40 °C min− 1) revealed a superposition of two peaks. When heating with slower heating rate (below 8 °C min− 1) was applied, the high-temperature peak disappeared (the “disappearing site”). Extractions of He atoms from grain and powder samples at different heating rates have shown that: (1) the “disappearing site” is revealed by the fast heating analyses of different amphibole samples but not only those from the Ponoy massif; (2) amount of He liberated from the “disappearing site” is variable and generally much less than the total amount of He in the sample; (3) analysis of the powder produced in the crushing experiments never reveals the “disappearing site”; the temperature of He release from the powder is lower than that from the mm grain size sample by ≈ 50 °C. Possible explanations of the nature of the “disappearing site” are discussed. However, independently on nature of this effect, repeated gas extractions by heating at different rates would give additional information about structure and its transformation during heating of amphiboles.The simplest explanation of the observed abundances of noble gas isotopes in the amphibole separates from Ponoy granites suggests local production, redistribution and partial loss of noble gases during evolution of the massif

    An optically multiplexed single-shot time-resolved probe of laser–plasma dynamics

    Get PDF
    We introduce a new approach to temporally resolve ultrafast micron-scale processes via the use of a multi-channel optical probe. We demonstrate that this technique enables highly precise time-resolved, two-dimensional spatial imaging of intense laser pulse propagation dynamics, plasma formation and laser beam filamentation within a single pulse over four distinct time frames. The design, development and optimization of the optical probe system is presented, as are representative experimental results from the first implementation of the multi-channel probe with a high-power laser pulse interaction with a helium gas jet target

    Absolute keV X-ray yield and conversion efficiency in over dense Si sub-petawatt laser plasma

    No full text
    Laser-produced plasmas are bright, short sources of x-rays commonly used for time-resolved imaging and spectroscopy. Their usage implies accurate knowledge of laser-to-x-ray conversion efficiency (CE), spectrum, photon yield and angular distribution. Here, we report on soft x-ray emission in the direction close to the target normal from a thin Si foil irradiated by a sub-PW picosecond laser pulse. These absolute measurements cover a continuous and broad spectral range that extends from 4.75 to 7.3 Å (1.7-2.6 keV). The x-ray spectrum consists of spectral line transitions from highly charged ions and broadband emission with contributions from recombination and free-free processes that occur when electrons decelerate in plasma electromagnetic fields. Angular distribution of the emission was investigated via particle-in-cell simulations, which allowed to estimate the yield into the full solid angle. We find that experimental and simulation estimations of laser to free-free emission CE are in good agreement

    Absolute keV X-ray yield and conversion efficiency in over dense Si sub-petawatt laser plasma

    No full text
    Laser-produced plasmas are bright, short sources of X-rays commonly used for time-resolved imaging and spectroscopy. Their usage implies accurate knowledge of laser-to-X-ray conversion efficiency, spectrum, photon yield and angular distribution. Here we report on soft X-ray emission in the direction close to the target normal from a thin Si foil irradiated by a sub-PW picosecond laser pulse. These absolute measurements cover a continuous and broad spectral range that extends from 4.75 to 7.5 Å(1.7–2.6 keV). The X-ray spectrum consists of spectral line transitions from highly charged ions and broadband emission with contributions from recombination and free-free processes that occur when electrons decelerate in plasma electromagnetic fields. Angular distribution of the emission was investigated via PIC simulations, which allowed to estimate the yield into the full solid angle. We found that experiment and simulation estimations of laser to free-free emission conversion efficiency are in a good agreement
    corecore