2,449 research outputs found

    Decentralised Coordination of Low-Power Embedded Devices Using the Max-Sum Algorithm

    No full text
    This paper considers the problem of performing decentralised coordination of low-power embedded devices (as is required within many environmental sensing and surveillance applications). Specifically, we address the generic problem of maximising social welfare within a group of interacting agents. We propose a novel representation of the problem, as a cyclic bipartite factor graph, composed of variable and function nodes (representing the agents’ states and utilities respectively). We show that such representation allows us to use an extension of the max-sum algorithm to generate approximate solutions to this global optimisation problem through local decentralised message passing. We empirically evaluate this approach on a canonical coordination problem (graph colouring), and benchmark it against state of the art approximate and complete algorithms (DSA and DPOP). We show that our approach is robust to lossy communication, that it generates solutions closer to those of DPOP than DSA is able to, and that it does so with a communication cost (in terms of total messages size) that scales very well with the number of agents in the system (compared to the exponential increase of DPOP). Finally, we describe a hardware implementation of our algorithm operating on low-power Chipcon CC2431 System-on-Chip sensor nodes

    On the nature of the first transient Z-source XTE J1701-462: its accretion disk structure, neutron star magnetic field strength, and hard tail

    Full text link
    Using the data from the Rossi X-Ray Timing Explorer satellite, we investigate the spectral evolution along a "Z" track and a "v" track on the hardness-intensity diagrams of the first transient Z source XTE J1701-462. The spectral analyses suggest that the inner disk radius depends on the mass accretion rate, in agreement with the model prediction, R_in \propto ((dM/dt)_disk)^{2/7}, for a radiation pressure dominated accretion disk interacting with the magnetosphere of a neutron star (NS). The changes in the disk mass accretion rate (dM/dt)_disk are responsible for the evolution of the "Z" or "v" track. The radiation pressure thickens the disk considerably, and also produces significant outflows. The NS surface magnetic field strength, derived from the interaction between the magnetosphere and the radiation pressure dominated accretion disk, is ~(1--3)X10^9 G, which is possibly between normal atoll and Z sources. A significant hard tail is detected in the horizontal branches and we discuss several possible origins of the hard tail

    Decentralized Coordination in RoboCup Rescue

    Full text link

    The transient hard X-ray tail of GX 17+2: new BeppoSAX results

    Get PDF
    We report on results of two BeppoSAX observations of the Z source GX 17+2. In both cases the source is in the horizontal branch of the colour-intensity diagram. The persistent continuum can be fit by two-component models consisting of a blackbody plus a Comptonization spectrum. With one of these models, two solutions for the blackbody temperature of both the observed and seed photons for Comptonization are equally accepted by the data. In the first observation, when the source is on the left part of the horizontal branch, we observe a hard tail extending up to 120 keV, while in the second observation, when the source moves towards right in the same branch, the tail is no longer detected. The hard (\ga 30 keV) X-ray emission can be modeled either by a simple power-law with photon index Γ∌\Gamma \sim 2.7, or assuming Comptonization of ∌\sim 1 keV soft photons off a hybrid thermal plus non-thermal electron plasma. The spectral index of the non-thermal injected electrons is p∌1.7p \sim 1.7. The observation of hard {X-ray} emission only in the left part of the horizontal branch could be indicative of the presence of a threshold in the accretion rate above which the hard tail disappears. An emission line at 6.7 keV with equivalent width ∌30\sim 30 eV is also found in both observations. We discuss these results and their physical implicationsComment: 11 pages, 10 figures, 4 tables. Accepted for publication in A&

    On the Spectral Evolution of Cygnus X-2 along its Color-Color Diagram

    Get PDF
    We report on the results of a broad band (0.1-200 keV) spectral study of Cyg X-2 using two BeppoSAX observations taken in 1996 and 1997, respectively, for a total effective on-source time of ~100 ks. The color-color (CD) and hardness-intensity (HID) diagrams show that the source was in the horizontal branch (HB) and normal branch (NB) during the 1996 and 1997 observation, respectively. Five spectra were selected around different positions of the source in the CD/HID, two in the HB and three in the NB. These spectra are fit to a model consisting of a disk blackbody, a Comptonization component, and two Gaussian emission lines at ~1 keV and ~6.6 keV, respectively. The addition of a hard power-law tail with photon index ~2, contributing ~1.5% of the source luminosity, improves the fit of the spectra in the HB. We interpret the soft component as the emission from the inner accretion disk, with inner temperature, k T_in, varying between 0.8 and 1.7 keV and inner radius, R_in, varying between 26 and 11 km (assuming an inclination angle of the system of 60 degrees). The Comptonization component is probably emitted by hot plasma (electron temperature k T_e varying between 3 and ~20 keV, optical depth \tau ~ 11-0.4, seed-photon temperature k T_W ~ 1-2.4 keV) surrounding the NS. The changes in the parameters of the blackbody component indicate that the inner rim of the disk approaches the NS surface when the source moves from the HB to the NB, i.e. as the (inferred) mass accretion rate increases. The parameters of the Comptonized component also change significantly when the source moves from the HB to the NB. We discuss possible scenarios which can explain these changes

    High-resolution tracking in a GEM-Emulsion detector

    Full text link
    SHiP (Search for Hidden Particles) is a beam dump experiment proposed at the CERN SPS aiming at the observation of long lived particles very weakly coupled with ordinary matter mostly produced in the decay of charmed hadrons. The beam dump facility of SHiP is also a copious factory of neutrinos of all three kinds and therefore a dedicated neutrino detector is foreseen in the SHiP apparatus. The neutrino detector exploits the Emulsion Cloud Chamber technique with a modular structure, alternating walls of target units and planes of electronic detectors providing the time stamp to the event. GEM detectors are one of the possible choices for this task. This paper reports the results of the first exposure to a muon beam at CERN of a new hybrid chamber, obtained by coupling a GEM chamber and an emulsion detector. Thanks to the micrometric accuracy of the emulsion detector, the position resolution of the GEM chamber as a function of the particle inclination was evaluated in two configurations, with and without the magnetic fiel

    A Hard X-ray View on Scorpius X-1 with INTEGRAL: non-Thermal Emission ?

    Full text link
    We present here simultaneous INTEGRAL/RXTE observations of Sco X-1, and in particular a study of the hard X-ray emission of the source and its correlation with the position in the Z-track of the X-ray color-color diagram. We find that the hard X-ray (above about 30 keV) emission of Sco X-1 is dominated by a power-law component with a photon index of ~3. The flux in the power-law component slightly decreases when the source moves in the color-color diagram in the sense of increasing inferred mass accretion rate from the horizontal branch to the normal branch/flaring branch vertex. It becomes not significantly detectable in the flaring branch, where its flux has decreased by about an order of magnitude. These results present close analogies to the behavior of GX 17+2, one of so-called Sco-like Z sources. Finally, the hard power law in the spectrum of Sco X-1 does not show any evidence of a high energy cutoff up to 100 - 200 keV, strongly suggesting a non-thermal origin of this component.Comment: 5 pages including 3 figures. Accepted for publication by ApJ Letter

    On a spin conformal invariant on manifolds with boundary

    Get PDF
    On a n-dimensional connected compact manifold with non-empty boundary equipped with a Riemannian metric, a spin structure and a chirality operator, we study some properties of a spin conformal invariant defined from the first eigenvalue of the Dirac operator under the chiral bag boundary condition. More precisely, we show that we can derive a spinorial analogue of Aubin's inequality.Comment: 26 page
    • 

    corecore