1,684 research outputs found

    Finite Volume/Element Discretization on Unstructured Meshes of the Multiscale Formulation of the Large Eddy Simulation Method and Application to Vortex Shedding

    Get PDF
    A finite volume/element discretization on tetrahedral meshes of the variation- al multiscale formulation of large eddy simulations is proposed for turbulent compressible flows. This discretization features an economical procedure based on agglomeration for separating a priori the scales, a corresponding projector for eliminating the small scales from the system of equations, and an effective control of the numerical dissipation induced by upwinding. The resulting LES method is validated with the three-dimensional numerical simulation of a low-speed flow past a square cylinder at M_Â¥ = 0.1 and Re = 22,000, and various comparisons with experimental data

    Finite Volume/Element Discretization on Unstructured Meshes of the Multiscale Formulation of the Large Eddy Simulation Method and Application to Vortex Shedding

    No full text
    A finite volume/element discretization on tetrahedral meshes of the variation- al multiscale formulation of large eddy simulations is proposed for turbulent compressible flows. This discretization features an economical procedure based on agglomeration for separating a priori the scales, a corresponding projector for eliminating the small scales from the system of equations, and an effective control of the numerical dissipation induced by upwinding. The resulting LES method is validated with the three-dimensional numerical simulation of a low-speed flow past a square cylinder at M_Â¥ = 0.1 and Re = 22,000, and various comparisons with experimental data

    BDDC and FETI-DP under Minimalist Assumptions

    Full text link
    The FETI-DP, BDDC and P-FETI-DP preconditioners are derived in a particulary simple abstract form. It is shown that their properties can be obtained from only on a very small set of algebraic assumptions. The presentation is purely algebraic and it does not use any particular definition of method components, such as substructures and coarse degrees of freedom. It is then shown that P-FETI-DP and BDDC are in fact the same. The FETI-DP and the BDDC preconditioned operators are of the same algebraic form, and the standard condition number bound carries over to arbitrary abstract operators of this form. The equality of eigenvalues of BDDC and FETI-DP also holds in the minimalist abstract setting. The abstract framework is explained on a standard substructuring example.Comment: 11 pages, 1 figure, also available at http://www-math.cudenver.edu/ccm/reports

    Mesh update techniques for free-surface flow solvers using spectral element method

    Get PDF
    This paper presents a novel mesh-update technique for unsteady free-surface Newtonian flows using spectral element method and relying on the arbitrary Lagrangian--Eulerian kinematic description for moving the grid. Selected results showing compatibility of this mesh-update technique with spectral element method are given

    Spatial discretization issues for the energy conservation in compressible flow problems on moving grids

    No full text
    The prediction of interaction phenomena between a compressible flow in a moving domain and other models like structural ones requires that some conservation properties need to be satisfied by the numerical schemes. In this paper we investigate the important problem of the work-energy conservation within the fluid for the discrete formulation on moving grids. In the case of a compressible flow, the work performed on the fluid by the moving interface has to be properly translated in a variation of the total fluid energy. We present a numerical model that satisfies this energy conservation property without loosing some other conservation properties such as the Geometric Conservation Law

    Auger Resonant Raman Spectroscopy Used to Study the Angular Distributions of the Xe 4d5/2 → 6p Decay Spectrum

    Full text link
    The Auger resonant Raman effect can be used as a method to eliminate natural lifetime broadening in resonant Auger spectra. We have coupled this method with high-resolution photons from the Advanced Light Source to study angular distributions and decay rates of the Xe4d5/2→6p resonant Auger lines. The angular distribution parameters β of almost all possible final ionic 5p4(3P, 1D, 1S)6p states have been determined. Our data, which remove the discrepancy between previous lower-resolution experimental results, are compared to different theoretical results

    Chemical Reaction and Flow Modeling in Fullerene and Nanotube Production

    Get PDF
    The development of processes to produce fullerenes and carbon nanotubes has largely been empirical. Fullerenes were first discovered in the soot produced by laser ablation of graphite [1]and then in the soot of electric arc evaporated carbon. Techniques and conditions for producing larger and larger quantities of fullerenes depended mainly on trial and error empirical variations of these processes, with attempts to scale them up by using larger electrodes and targets and higher power. Various concepts of how fullerenes and carbon nanotubes were formed were put forth, but very little was done based on chemical kinetics of the reactions. This was mainly due to the complex mixture of species and complex nature of conditions in the reactors. Temperatures in the reactors varied from several thousand degrees Kelvin down to near room temperature. There are hundreds of species possible, ranging from atomic carbon to large clusters of carbonaceous soot, and metallic catalyst atoms to metal clusters, to complexes of metals and carbon. Most of the chemical kinetics of the reactions and the thermodynamic properties of clusters and complexes have only been approximated. In addition, flow conditions in the reactors are transient or unsteady, and three dimensional, with steep spatial gradients of temperature and species concentrations. All these factors make computational simulations of reactors very complex and challenging. This article addresses the development of the chemical reaction involved in fullerene production and extends this to production of carbon nanotubes by the laser ablation/oven process and by the electric arc evaporation process. In addition, the high-pressure carbon monoxide (HiPco) process is discussed. The article is in several parts. The first one addresses the thermochemical aspects of modeling; and considers the development of chemical rate equations, estimates of reaction rates, and thermodynamic properties where they are available. The second part addresses modeling of the arc process for fullerene and carbon nanotube production using O-D, 1-D and 2-D fluid flow models. The third part addresses simulations of the pulsed laser ablation process using time-dependent techniques in 2-D, and a steady state 2-D simulation of a continuous laser ablation process. The fourth part addresses steady state modeling in O-D and 2-D of the HiPco process. In each of the simulations, there is a variety of simplifications that are made that enable one to concentrate on one aspect or another of the process. There are simplifications that can be made to the chemical reaction models , e.g. reduction in number of species by lumping some of them together in a representative species. Other simulations are carried out by eliminating the chemistry altogether in order to concentrate on the fluid dynamics. When solving problems with a large number of species in more than one spatial dimension, it is almost imperative that the problem be decoupled by solving for the fluid dynamics to find the fluid motion and temperature history of "particles" of fluid moving through a reactor. Then one can solve the chemical rate equations with complex chemistry following the temperature and pressure history. One difficulty is that often mixing with an ambient gas is involved. Therefore, one needs to take dilution and mixing into account. This changes the ratio of carbon species to background gas. Commercially available codes may have no provision for including dilution as part of the input. One must the write special solvers for including dilution in decoupled problems. The article addresses both ful1erene production and single-walled carbon nanotube (SWNT) production. There are at least two schemes or concepts of SWNT growth. This article will only address growth in the gas phase by carbon and catalyst cluster growth and SW T formation by the addition of carbon. There are other models that conceive of SWNT growth as a phase separation process from clusters me up carbon and metal catalyst, with the carbon precipitating from the cluster as it cools. We will not deal with that concept in this article. Further research is needed to determine the rates at which these composite clusters form, evaporate, and segregate

    Heterogeneous Batch Distillation Processes: Real System Optimisation

    Get PDF
    In this paper, optimisation of batch distillation processes is considered. It deals with real systems with rigorous simulation of the processes through the resolution full MESH differential algebraic equations. Specific software architecture is developed, based on the BatchColumn® simulator and on both SQP and GA numerical algorithms, and is able to optimise sequential batch columns as long as the column transitions are set. The efficiency of the proposed optimisation tool is illustrated by two case studies. The first one concerns heterogeneous batch solvent recovery in a single distillation column and shows that significant economical gains are obtained along with improved process conditions. Case two concerns the optimisation of two sequential homogeneous batch distillation columns and demonstrates the capacity to optimize several sequential dynamic different processes. For such multiobjective complex problems, GA is preferred to SQP that is able to improve specific GA solutions
    • …
    corecore