193 research outputs found

    Correlation between soil erodibility and satellite data on areas of current desertification: a case study in Senegal.

    Get PDF
    The purpose of the study is to verify whether some correlation exists between soil erodibility (i.e. K factor mentioned in RUSLE model) and data obtained from satellite images. This piece of work represents a first attempt towards a model that would predict the risk for soil erosion, from information contained in satellite images. Ouarchoch is a rural community in Ferlo Region, Senegal. It lies in a Sahelian typical arid zone and is affected by desertification processes. Ouarchoch site was the pilot area on which the test was performed. K factor was calculated by using soil textural data (sand, silt and clay) in the top (0 ? 5 cm) soil layer (data obtained from the web). Landsat7 satellite images represented different seasonal snapshots (?cool? dry season, warm dry season, rainy season, end of rainy season or beginning of dry season) of the same year, 2014. Calculation used Bands 1 to 7 and Normalized Difference Vegetation Index (NDVI). The choice of data, calculation and analysis are detailed. Some positive moderate correlation exists between soil erodibility on the one hand, and NDVI index displayed during the dry season (images in January and May), as well as Band 5 radiations displayed at the beginning of the dry season (post-harvest, image in October) on the other hand

    Fine genetic mapping of a gene required for Rice yellow mottle virus cell-to-cell movement

    Get PDF
    International audienceThe very high resistance to rice yellow mottle virus observed in the two rice varieties Gigante (Oryza sativa) and Tog 5681 (O. glaberrima) is monogenic and recessive. Bulked segregant analysis was carried out to identify AFLP markers linked to the resistance gene. Mapping of PCR-specific markers, CAPS and microsatellite markers on 429 individuals of an IR64 × Gigante F 2 population pinpointed this resistance gene on the long arm of chromosome 4 in a 3.7-cM interval spanned by PCR markers. These markers also flanked the resistance gene of the O. glaberrima accession Tog 5681 and confirmed previous allelism tests. The rarity of this recessive natural resistance was in line with a resistance mechanism model based on point mutations of a host component required for cell-to-cell movement of the virus. Preliminary data on the genetic divergence between the two cultivated rice species in the vicinity of the resistance locus suggested that two different resistance alleles are present in Gigante and Tog 5681. A large set of recombinants is now available to envisage physical mapping and cloning of the gene

    Clustering of magnetic reconnection exhausts in the solar wind: An automated detection study

    Get PDF
    Context. Magnetic reconnection is a fundamental process in astrophysical plasmas that enables the dissipation of magnetic energy at kinetic scales. Detecting this process in situ is therefore key to furthering our understanding of energy conversion in space plasmas. However, reconnection jets typically scale from seconds to minutes in situ, and as such, finding them in the decades of data provided by solar wind missions since the beginning of the space era is an onerous task. Aims. In this work, we present a new approach for automatically identifying reconnection exhausts in situ in the solar wind. We apply the algorithm to Solar Orbiter data obtained while the spacecraft was positioned at between 0.6 and 0.8 AU and perform a statistical study on the jets we detect. Methods. The method for automatic detection is inspired by the visual identification process and strongly relies on the Walén relation. It is enhanced through the use of Bayesian inference and physical considerations to detect reconnection jets with a consistent approach. Results. Applying the detection algorithm to one month of Solar Orbiter data near 0.7 AU, we find an occurrence rate of seven jets per day, which is significantly higher than in previous studies performed at 1 AU. We show that they tend to cluster in the solar wind and are less likely to occur in the tenuous solar wind (< 10 cm−3 near 0.7 AU). We discuss why the source and the degree of Alfvénicity of the solar wind might have an impact on magnetic reconnection occurrence. Conclusions. By providing a tool to quickly identify potential magnetic reconnection exhausts in situ, we pave the way for broader statistical studies on magnetic reconnection in diverse plasma environments

    Magnetic increases with central current sheets: Observations with Parker Solar Probe

    Get PDF
    Aims. We report the observation by Parker Solar Probe (PSP) of magnetic structures in the solar wind that present a strong peak in their magnetic field magnitude with an embedded central current sheet. Similar structures have been observed, either at the Earth’s magnetopause and called interlinked flux tubes, or in the solar wind and called interplanetary field enhancements. Methods. In this work, we first investigate two striking events in detail; one occurred in the regular slow solar wind on November 2, 2018 and the other was observed during a heliospheric current sheet crossing on November 13, 2018. They both show the presence of a central current sheet with a visible ion jet and general characteristics consistent with the occurrence of magnetic reconnection. We then performed a survey of PSP data from encounters 1 to 4 and find 18 additional events presenting an increase in the magnetic field magnitude of over 30% and a central current sheet. We performed a statistical study on the 20 "magnetic increases with central current sheet" (MICCS), with 13 observed in the regular slow solar wind with a constant polarity (i.e., identical strahl direction), and 7 which were specifically observed near a heliospheric current sheet (HCS) crossing. Results. We analyze and discuss the general properties of the structures, including the duration, location, amplitude, and magnetic topology, as well as the characteristics of their central current sheet. We find that the latter has a preferential orientation in the TN plane of the RTN frame. We also find no significant change in the dust impact rate in the vicinity of the MICCS under study, leading us to conclude that dust probably plays no role in the MICCS formation and evolution. Our findings are overall consistent with a double flux tube-configuration that would result from initially distinct flux tubes which interact during solar wind propagation

    Historical Contingencies Modulate the Adaptability of Rice Yellow Mottle Virus

    Get PDF
    The rymv1-2 and rymv1-3 alleles of the RYMV1 resistance to Rice yellow mottle virus (RYMV), coded by an eIF(iso)4G1 gene, occur in a few cultivars of the Asiatic (Oryza sativa) and African (O. glaberrima) rice species, respectively. The most salient feature of the resistance breaking (RB) process is the converse genetic barrier to rymv1-2 and rymv1-3 resistance breakdown. This specificity is modulated by the amino acid (glutamic acid vs. threonine) at codon 49 of the Viral Protein genome-linked (VPg), a position which is adjacent to the virulence codons 48 and 52. Isolates with a glutamic acid (E) do not overcome rymv1-3 whereas those with a threonine (T) rarely overcome rymv1-2. We found that isolates with T49 had a strong selective advantage over isolates with E49 in O. glaberrima susceptible cultivars. This explains the fixation of the mutation T49 during RYMV evolution and accounts for the diversifying selection estimated at codon 49. Better adapted to O. glaberrima, isolates with T49 are also more prone than isolates with E49 to fix rymv1-3 RB mutations at codon 52 in resistant O. glaberrima cultivars. However, subsequent genetic constraints impaired the ability of isolates with T49 to fix rymv1-2 RB mutations at codons 48 and 52 in resistant O. sativa cultivars. The origin and role of the amino acid at codon 49 of the VPg exemplifies the importance of historical contingencies in the ability of RYMV to overcome RYMV1 resistance

    Flux rope and dynamics of the heliospheric current sheet Study of the Parker Solar Probe and Solar Orbiter conjunction of June 2020

    Get PDF
    Context: Solar Orbiter and Parker Solar Probe jointly observed the solar wind for the first time in June 2020, capturing data from very different solar wind streams: calm, Alfvénic wind and also highly dynamic large-scale structures. Context. Our aim is to understand the origin and characteristics of the highly dynamic solar wind observed by the two probes, particularly in the vicinity of the heliospheric current sheet (HCS). Methods: We analyzed the plasma data obtained by Parker Solar Probe and Solar Orbiter in situ during the month of June 2020. We used the Alfvén-wave turbulence magnetohydrodynamic solar wind model WindPredict-AW and we performed two 3D simulations based on ADAPT solar magnetograms for this period. Results: We show that the dynamic regions measured by both spacecraft are pervaded by flux ropes close to the HCS. These flux ropes are also present in the simulations, forming at the tip of helmet streamers, that is, at the base of the heliospheric current sheet. The formation mechanism involves a pressure-driven instability followed by a fast tearing reconnection process. We further characterize the 3D spatial structure of helmet streamer born flux ropes, which appears in the simulations to be related to the network of quasi-separatrices

    Magnetic reconnection as a mechanism to produce multiple protonpopulations and beams locally in the solar wind

    Get PDF
    Context. Spacecraft observations early revealed frequent multiple proton populations in the solar wind. Decades of research on their origin have focused on processes such as magnetic reconnection in the low corona and wave-particle interactions in the corona and locally in the solar wind.Aims.This study aims to highlight that multiple proton populations and beams are also produced by magnetic reconnection occurring locally in the solar wind. Methods. We use high resolution Solar Orbiter proton velocity distribution function measurements, complemented by electron and magnetic field data, to analyze the association of multiple proton populations and beams with magnetic reconnection during a period of slow Alfv\'enic solar wind on 16 July 2020. Results. At least 6 reconnecting current sheets with associated multiple proton populations and beams, including a case of magnetic reconnection at a switchback boundary, are found during this day. This represents 2% of the measured distribution functions. We discuss how this proportion may be underestimated, and how it may depend on solar wind type and distance from the Sun. Conclusions. Although suggesting a likely small contribution, but which remains to be quantitatively assessed, Solar Orbiter observations show that magnetic reconnection must be considered as one of the mechanisms that produce multiple proton populations and beams locally in the solar wind

    The map-1 Gene Family in Root-Knot Nematodes, Meloidogyne spp.: A Set of Taxonomically Restricted Genes Specific to Clonal Species

    Get PDF
    Taxonomically restricted genes (TRGs), i.e., genes that are restricted to a limited subset of phylogenetically related organisms, may be important in adaptation. In parasitic organisms, TRG-encoded proteins are possible determinants of the specificity of host-parasite interactions. In the root-knot nematode (RKN) Meloidogyne incognita, the map-1 gene family encodes expansin-like proteins that are secreted into plant tissues during parasitism, thought to act as effectors to promote successful root infection. MAP-1 proteins exhibit a modular architecture, with variable number and arrangement of 58 and 13-aa domains in their central part. Here, we address the evolutionary origins of this gene family using a combination of bioinformatics and molecular biology approaches. Map-1 genes were solely identified in one single member of the phylum Nematoda, i.e., the genus Meloidogyne, and not detected in any other nematode, thus indicating that the map-1 gene family is indeed a TRG family. A phylogenetic analysis of the distribution of map-1 genes in RKNs further showed that these genes are specifically present in species that reproduce by mitotic parthenogenesis, with the exception of M. floridensis, and could not be detected in RKNs reproducing by either meiotic parthenogenesis or amphimixis. These results highlight the divergence between mitotic and meiotic RKN species as a critical transition in the evolutionary history of these parasites. Analysis of the sequence conservation and organization of repeated domains in map-1 genes suggests that gene duplication(s) together with domain loss/duplication have contributed to the evolution of the map-1 family, and that some strong selection mechanism may be acting upon these genes to maintain their functional role(s) in the specificity of the plant-RKN interactions
    corecore