17 research outputs found

    Submicroscopic Deletions at 13q32.1 Cause Congenital Microcoria.

    Get PDF
    International audienceCongenital microcoria (MCOR) is a rare autosomal-dominant disorder characterized by inability of the iris to dilate owing to absence of dilator pupillae muscle. So far, a dozen MCOR-affected families have been reported worldwide. By using whole-genome oligonucleotide array CGH, we have identified deletions at 13q32.1 segregating with MCOR in six families originating from France, Japan, and Mexico. Breakpoint sequence analyses showed nonrecurrent deletions in 5/6 families. The deletions varied from 35 kbp to 80 kbp in size, but invariably encompassed or interrupted only two genes: TGDS encoding the TDP-glucose 4,6-dehydratase and GPR180 encoding the G protein-coupled receptor 180, also known as intimal thickness-related receptor (ITR). Unlike TGDS which has no known function in muscle cells, GPR180 is involved in the regulation of smooth muscle cell growth. The identification of a null GPR180 mutation segregating over two generations with iridocorneal angle dysgenesis, which can be regarded as a MCOR endophenotype, is consistent with the view that deletions of this gene, with or without the loss of elements regulating the expression of neighboring genes, are the cause of MCOR

    Molecular and pathophysiological basis of diseases hereditary eye : Work of creating a transgenic rodent daytime model Stargardt disease : Identification of a novel gene of anophthalmia / microphthalmia

    No full text
    La maladie de Stargardt est la plus frĂ©quente des maculopathies hĂ©rĂ©ditaires et peut ĂȘtre regardĂ©e comme un modĂšle juvĂ©nile de certaines dĂ©gĂ©nĂ©rescences maculaires liĂ©es Ă  l’ñge. Elle rĂ©sulte de mutations rĂ©cessives du gĂšne ABCA4, responsables d’une accumulation toxique de sous-produits de la vitamine A dans la rĂ©tine. Dans ce contexte, des approches thĂ©rapeutiques pharmacologiques se dĂ©veloppent qui visent Ă  diminuer la concentration de ces composĂ©s toxiques par rĂ©duction de la concentration rĂ©tinienne en vitamine A. L’utilisation de compĂ©titeurs de cette vitamine ont permis d’atteindre cet objectif chez la souris abca4-/-. La souris n’est toutefois pas un bon modĂšle pour la maladie de Stargardt ; chez l’homme les mutations du gĂšne ABCA4 sont responsables d’une dĂ©gĂ©nĂ©rescence des photorĂ©cepteurs maculaires i.e. en majoritĂ© des cĂŽnes. Or, la souris Ă©tant un animal nocturne, sa rĂ©tine est particuliĂšrement pauvre en cĂŽnes. Au demeurant, alors que la maladie de Stargardt se caractĂ©rise par une dĂ©gĂ©nĂ©rescence des photorĂ©cepteurs, ceci n’est jamais observĂ© chez la souris abca4-/-, mĂȘme Ă  un stade avancĂ©, en dĂ©pit d’une accumulation des dĂ©rivĂ©s toxiques de la vitamine A. Ainsi, s’il est possible de rĂ©duire l’accumulation de dĂ©rivĂ©s toxiques de la vitamine A dans la rĂ©tine de ces animaux par l’utilisation de compĂ©titeurs, rien ne permet de prĂ©sager de leur effet neuroprotecteur. Il en est de mĂȘme pour les essais de thĂ©rapie gĂ©nique qui se dĂ©veloppent directement chez le patient faute de modĂšle animal pertinent.Nos travaux de thĂšse ont portĂ© sur la crĂ©ation d’un modĂšle animal plus adĂ©quat. Le rongeur diurne Arvicanthis ansorgei a Ă©tĂ© choisi en raison de la richesse de sa rĂ©tine en cĂŽnes et son appartenance Ă  la famille des muridĂ©s proches des rongeurs de laboratoire. Nous avons entrepris de produire un animal transgĂ©nique par interfĂ©rence de l’ARN. AprĂšs avoir confirmĂ© l’expression d’Abca4 dans les bĂątonnets et les cĂŽnes de l’animal et caractĂ©risĂ© la sĂ©quence de l’ADNc, nous avons recherchĂ© une sĂ©quence d’ARN antisens et une construction lentivirale permettant d’interfĂ©rer efficacement sur l’expression du gĂšne abca4 dans les photorĂ©cepteurs. Cette derniĂšre Ă©tape a abouti avec l’identification du vecteur lentiviral pLKO1 qui a permis la production d’ARN antisens dans les photorĂ©cepteurs de souris et de rats transgĂ©niques. En revanche, les sĂ©quences ARN antisens utilisĂ©es jusqu’alors n’ont pas permis d’interfĂ©rer efficacement sur l’expression du gĂšne. D’autre part, des protocoles de reproduction assistĂ©e ont Ă©tĂ© dĂ©veloppĂ©s chez A. ansorgei prenantpour modĂšle ceux existant chez les rongeurs de laboratoire. Ceci a autorisĂ© l’obtention de nombreux embryons en dĂ©pit de nombreuses difficultĂ©s rencontrĂ©es au cours de ces manipulations Ă  des fins de procrĂ©ation rĂ©sultant d’un manque de connaissances du cycle sexuel d’A. ansorgei. L’implantation de ces embryons dans l’oviducte de femelles pseudogestantes s’est heurtĂ©e aux mĂȘmes difficultĂ©s. NĂ©anmoins le succĂšs de cette entreprise a Ă©tĂ© obtenu une fois, encourageant Ă  poursuivre ces manipulations dans une cohorte Ă©largie d’animaux.Les anophtalmies et microphtalmies sĂ©vĂšres sont des anomalies prĂ©coces du dĂ©veloppement oculaire. Elles rĂ©sultent d’un dĂ©faut d’induction ou d’invagination de la vĂ©sicule optique primaire ou d’un dĂ©faut de fermeture de la fente colobomique. Ces malformations sont responsables de grande malvoyance voire de cĂ©citĂ© totale. D’origine gĂ©nĂ©tique, elles se transmettent selon tous les modes de transmission. Dans la famille qui a fait l’objet des travaux de ce mĂ©moire, la microphtalmie rĂ©cessive autosomique s’observait dans deux fratries consanguines rĂ©unies par une boucle de consanguinitĂ© commune....Pas de rĂ©sumĂ© en anglai

    Bases moléculaires et physiopathologiques des affections héréditaires ophtalmologiques (Travaux de création d'un rongeur diurne transgénique modÚle de la maladie de Stargardt)

    No full text
    La maladie de Stargardt est la plus frĂ©quente des maculopathies hĂ©rĂ©ditaires et peut ĂȘtre regardĂ©e comme un modĂšle juvĂ©nile de certaines dĂ©gĂ©nĂ©rescences maculaires liĂ©es Ă  l Ăąge. Elle rĂ©sulte de mutations rĂ©cessives du gĂšne ABCA4, responsables d une accumulation toxique de sous-produits de la vitamine A dans la rĂ©tine. Dans ce contexte, des approches thĂ©rapeutiques pharmacologiques se dĂ©veloppent qui visent Ă  diminuer la concentration de ces composĂ©s toxiques par rĂ©duction de la concentration rĂ©tinienne en vitamine A. L utilisation de compĂ©titeurs de cette vitamine ont permis d atteindre cet objectif chez la souris abca4-/-. La souris n est toutefois pas un bon modĂšle pour la maladie de Stargardt ; chez l homme les mutations du gĂšne ABCA4 sont responsables d une dĂ©gĂ©nĂ©rescence des photorĂ©cepteurs maculaires i.e. en majoritĂ© des cĂŽnes. Or, la souris Ă©tant un animal nocturne, sa rĂ©tine est particuliĂšrement pauvre en cĂŽnes. Au demeurant, alors que la maladie de Stargardt se caractĂ©rise par une dĂ©gĂ©nĂ©rescence des photorĂ©cepteurs, ceci n est jamais observĂ© chez la souris abca4-/-, mĂȘme Ă  un stade avancĂ©, en dĂ©pit d une accumulation des dĂ©rivĂ©s toxiques de la vitamine A. Ainsi, s il est possible de rĂ©duire l accumulation de dĂ©rivĂ©s toxiques de la vitamine A dans la rĂ©tine de ces animaux par l utilisation de compĂ©titeurs, rien ne permet de prĂ©sager de leur effet neuroprotecteur. Il en est de mĂȘme pour les essais de thĂ©rapie gĂ©nique qui se dĂ©veloppent directement chez le patient faute de modĂšle animal pertinent.Nos travaux de thĂšse ont portĂ© sur la crĂ©ation d un modĂšle animal plus adĂ©quat. Le rongeur diurne Arvicanthis ansorgei a Ă©tĂ© choisi en raison de la richesse de sa rĂ©tine en cĂŽnes et son appartenance Ă  la famille des muridĂ©s proches des rongeurs de laboratoire. Nous avons entrepris de produire un animal transgĂ©nique par interfĂ©rence de l ARN. AprĂšs avoir confirmĂ© l expression d Abca4 dans les bĂątonnets et les cĂŽnes de l animal et caractĂ©risĂ© la sĂ©quence de l ADNc, nous avons recherchĂ© une sĂ©quence d ARN antisens et une construction lentivirale permettant d interfĂ©rer efficacement sur l expression du gĂšne abca4 dans les photorĂ©cepteurs. Cette derniĂšre Ă©tape a abouti avec l identification du vecteur lentiviral pLKO1 qui a permis la production d ARN antisens dans les photorĂ©cepteurs de souris et de rats transgĂ©niques. En revanche, les sĂ©quences ARN antisens utilisĂ©es jusqu alors n ont pas permis d interfĂ©rer efficacement sur l expression du gĂšne. D autre part, des protocoles de reproduction assistĂ©e ont Ă©tĂ© dĂ©veloppĂ©s chez A. ansorgei prenantpour modĂšle ceux existant chez les rongeurs de laboratoire. Ceci a autorisĂ© l obtention de nombreux embryons en dĂ©pit de nombreuses difficultĂ©s rencontrĂ©es au cours de ces manipulations Ă  des fins de procrĂ©ation rĂ©sultant d un manque de connaissances du cycle sexuel d A. ansorgei. L implantation de ces embryons dans l oviducte de femelles pseudogestantes s est heurtĂ©e aux mĂȘmes difficultĂ©s. NĂ©anmoins le succĂšs de cette entreprise a Ă©tĂ© obtenu une fois, encourageant Ă  poursuivre ces manipulations dans une cohorte Ă©largie d animaux.Les anophtalmies et microphtalmies sĂ©vĂšres sont des anomalies prĂ©coces du dĂ©veloppement oculaire. Elles rĂ©sultent d un dĂ©faut d induction ou d invagination de la vĂ©sicule optique primaire ou d un dĂ©faut de fermeture de la fente colobomique. Ces malformations sont responsables de grande malvoyance voire de cĂ©citĂ© totale. D origine gĂ©nĂ©tique, elles se transmettent selon tous les modes de transmission. Dans la famille qui a fait l objet des travaux de ce mĂ©moire, la microphtalmie rĂ©cessive autosomique s observait dans deux fratries consanguines rĂ©unies par une boucle de consanguinitĂ© commune....Pas de rĂ©sumĂ© en anglaisPARIS5-Bibliotheque electronique (751069902) / SudocSudocFranceF

    Congenital Microcoria: Clinical Features and Molecular Genetics

    No full text
    International audienceIris integrity is required to regulate both the amount of light reaching the retina and intraocular pressure (IOP), with elevated IOP being a major risk factor for glaucoma. Congenital microcoria (MCOR) is an extremely rare, autosomal dominant disease affecting iris development and hindering both of these functions. It is characterized by absent or underdeveloped dilator muscle fibers and immaturity of the iridocorneal angle—where the aqueous humor is drained—which play a central role in IOP regulation. The dilator muscle anomaly is manifested in pinhole pupils (<2 mm) and thin transilluminable irises, causing both hemeralopia and photoaversion. Axial myopia and juvenile open-angle glaucoma are very frequent (80% and 30% of all cases, respectively). It has been suggested that the immaturity of the chamber angle contributes to glaucoma, and myopia has been ascribed to photoaversion and elevated IOP. Though possible, these mechanisms are insufficient. The disease has been tied to chromosome 13q32.1 structural variations. In addition to compromising iris development, modification of the 13q32.1 architecture could alter signaling pathways for axial ocular length and IOP regulation. Here, we summarize the clinical, histological, and molecular features of this disease, and we discuss the possible etiology of associated anomalies

    Structural Variant Disrupting the Expression of the Remote <i>FOXC1</i> Gene in a Patient with Syndromic Complex Microphthalmia

    No full text
    Ocular malformations (OMs) arise from early defects during embryonic eye development. Despite the identification of over 100 genes linked to this heterogeneous group of disorders, the genetic cause remains unknown for half of the individuals following Whole-Exome Sequencing. Diagnosis procedures are further hampered by the difficulty of studying samples from clinically relevant tissue, which is one of the main obstacles in OMs. Whole-Genome Sequencing (WGS) to screen for non-coding regions and structural variants may unveil new diagnoses for OM individuals. In this study, we report a patient exhibiting a syndromic OM with a de novo 3.15 Mb inversion in the 6p25 region identified by WGS. This balanced structural variant was located 100 kb away from the FOXC1 gene, previously associated with ocular defects in the literature. We hypothesized that the inversion disrupts the topologically associating domain of FOXC1 and impairs the expression of the gene. Using a new type of samples to study transcripts, we were able to show that the patient presented monoallelic expression of FOXC1 in conjunctival cells, consistent with the abolition of the expression of the inverted allele. This report underscores the importance of investigating structural variants, even in non-coding regions, in individuals affected by ocular malformations

    Abnormal respiratory cilia in non-syndromic Leber congenital amaurosis with CEP290 mutations

    Get PDF
    International audienceBackground : Leber congenital amaurosis (LCA) is the earliest and most severe inherited retinal degeneration. Isolated forms of LCA frequently result from mutation of the CEP290 gene which is expressed in various ciliated tissues. Methods : Seven LCA patients with CEP290 mutations were investigated to study otorhinolaryngologic phenotype and respiratory cilia. Nasal biopsies and brushing were performed to study cilia ultrastructure using transmission electron microscopy and ciliary beating using high-speed videomicroscopy, respectively. CEP290 expression in normal nasal epithelium was studied using real time RT-PCR. Results : When electron microscopy was feasible (5/7), high levels of respiratory cilia defects were detected. The main defects concerned dynein arms, central complex and/or peripheral microtubules. All patients had a rarefaction of ciliated cells and a variable proportion of short cilia. Frequent but moderate and heterogeneous clinical and ciliary beating abnormalities were found. CEP290 was highly expressed in the neural retina and nasal epithelial cells compared to other tissues. Discussion : These data provide the first clear demonstration of respiratory cilia ultrastructural defects in LCA patients with CEP290 mutations. The frequency of these findings in LCA patients along with the high expression of CEP290 in nasal epithelium suggest that CEP290 has an important role in the proper development of both the respiratory ciliary structures and the connecting cilia of photoreceptors. The presence of respiratory symptoms in patients could represent additional clinical criteria to direct CEP290 genotyping of patients affected with the genetically heterogeneous cone-rod dystrophy subtype of LCA

    TMEM126A is a mitochondrial located mRNA (MLR) protein of the mitochondrial inner membrane

    No full text
    International audienceBackground: Hereditary optic neuropathies (HONs) are a heterogeneous group of disorders that affect retinal ganglion cells (RGCs) and axons that form the optic nerve. Leber's Hereditary Optic Neuropathy and the autosomal dominant optic atrophy related to OPA1 mutations are the most common forms. Nonsyndromic autosomal recessive optic neuropathies are rare and their existence has been long debated. We recently identified the first gene responsible for these conditions, TMEM126A. This gene is highly expressed in retinal cellular compartments enriched in mitochondria and supposed to encode a mitochondrial transmembrane protein of unknown function. Methods: A specific polyclonal antibody targeting the TMEM126A protein has been generated. Quantitative fluorescent in situ hybridization, cellular fractionation, mitochondrial membrane association study, mitochondrial sub compartmentalization analysis by both proteolysis assays and transmission electron microscopy, and expression analysis of truncated TMEM126A constructs by immunofluorescence confocal microscopy were carried out. Results: TMEM126A mRNAs are strongly enriched in the vicinity of mitochondria and encode an inner mitochondrial membrane associated cristae protein. Moreover, the second transmembrane domain of TMEM126A is required for its mitochondrial localization. Conclusions: TMEM126A is a mitochondrial located mRNA (MLR) that may be translated in the mitochondrial surface and the protein is subsequently imported to the inner membrane. These data constitute the first step toward a better understanding of the mechanism of action of TMEM126A in RGCs and support the importance of mitochondrial dysfunction in the pathogenesis of HON. General significance: Local translation of nuclearly encoded mitochondrial mRNAs might be a mechanism for rapid onsite supply of mitochondrial membrane proteins. (C) 2013 Elsevier B.V. All rights reserved

    Bi-allelic variants in WNT7B disrupt the development of multiple organs in humans

    No full text
    International audienceBackground Pulmonary hypoplasia, Diaphragmatic anomalies, Anophthalmia/microphthalmia and Cardiac defects delineate the PDAC syndrome. We aim to identify the cause of PDAC syndrome in patients who do not carry pathogenic variants in RARB and STRA6 , which have been previously associated with this disorder. Methods We sequenced the exome of patients with unexplained PDAC syndrome and performed functional validation of candidate variants. Results We identified bi-allelic variants in WNT7B in fetuses with PDAC syndrome from two unrelated families. In one family, the fetus was homozygous for the c.292C>T (p.(Arg98*)) variant whereas the fetuses from the other family were compound heterozygous for the variants c.225C>G (p.(Tyr75*)) and c.562G>A (p.(Gly188Ser)). Finally, a molecular autopsy by proxy in a consanguineous couple that lost two babies due to lung hypoplasia revealed that both parents carry the p.(Arg98*) variant. Using a WNT signalling canonical luciferase assay, we demonstrated that the identified variants are deleterious. In addition, we found that wnt7bb mutant zebrafish display a defect of the swimbladder, an air-filled organ that is a structural homolog of the mammalian lung, suggesting that the function of WNT7B has been conserved during evolution for the development of these structures. Conclusion Our findings indicate that defective WNT7B function underlies a form of lung hypoplasia that is associated with the PDAC syndrome, and provide evidence for involvement of the WNT–ÎČ-catenin pathway in human lung, tracheal, ocular, cardiac, and renal development

    TMEM126A, Encoding a Mitochondrial Protein, Is Mutated in Autosomal-Recessive Nonsyndromic Optic Atrophy

    Get PDF
    Nonsyndromic autosomal-recessive optic neuropathies are rare conditions of unknown genetic and molecular origin. Using an approach of whole-genome homozygosity mapping and positional cloning, we have identified the first gene, to our knowledge, responsible for this condition, TMEM126A, in a large multiplex inbred Algerian family and subsequently in three other families originating from the Maghreb. TMEM126A is conserved in higher eukaryotes and encodes a transmembrane mitochondrial protein of unknown function, supporting the view that mitochondrial dysfunction may be a hallmark of inherited optic neuropathies including isolated autosomal-recessive forms
    corecore