10 research outputs found

    Genome Mutational and Transcriptional Hotspots Are Traps for Duplicated Genes and Sources of Adaptations

    Full text link
    [EN] Gene duplication generates new genetic material, which has been shown to lead to major innovations in unicellular and multicellular organisms. A whole-genome duplication occurred in the ancestor of Saccharomyces yeast species but 92% of duplicates returned to single-copy genes shortly after duplication. The persisting duplicated genes in Saccharomyces led to the origin of major metabolic innovations, which have been the source of the unique biotechnological capabilities in the Baker's yeast Saccharomyces cerevisiae. What factors have determined the fate of duplicated genes remains unknown. Here, we report the first demonstration that the local genome mutation and transcription rates determine the fate of duplicates. We show, for the first time, a preferential location of duplicated genes in the mutational and transcriptional hotspots of S. cerevisiae genome. The mechanism of duplication matters, with whole-genome duplicates exhibiting different preservation trends compared to small-scale duplicates. Genome mutational and transcriptional hotspots are rich in duplicates with large repetitive promoter elements. Saccharomyces cerevisiae shows more tolerance to deleterious mutations in duplicates with repetitive promoter elements, which in turn exhibit higher transcriptional plasticity against environmental perturbations. Our data demonstrate that the genome traps duplicates through the accelerated regulatory and functional divergence of their gene copies providing a source of novel adaptations in yeast.This study was supported by a grant (reference: FEDER-BFU2015-66073-P) from the Spanish Ministerio de Economia y Competitividad-FEDER and a grant (reference: ACOMP/2015/026) from the local government Conselleria de Educacion Investigacion, Cultura y Deporte, Generalitat Valenciana to M.A.F. C.T. was supported by a grant Juan de la Cierva from the Spanish Ministerio de Economia y Competitividad (reference: JCA-2012-14056).Fares Riaño, MA.; Sabater-Muñoz, B.; Toft, C. (2017). Genome Mutational and Transcriptional Hotspots Are Traps for Duplicated Genes and Sources of Adaptations. Genome Biology and Evolution. 9(5):1229-1240. https://doi.org/10.1093/gbe/evx085S1229124095Agier, N., & Fischer, G. (2011). The Mutational Profile of the Yeast Genome Is Shaped by Replication. Molecular Biology and Evolution, 29(3), 905-913. doi:10.1093/molbev/msr280Altschul, S. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389-3402. doi:10.1093/nar/25.17.3389Anders, S., & Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biology, 11(10). doi:10.1186/gb-2010-11-10-r106Berry, D. B., & Gasch, A. P. (2008). Stress-activated Genomic Expression Changes Serve a Preparative Role for Impending Stress in Yeast. Molecular Biology of the Cell, 19(11), 4580-4587. doi:10.1091/mbc.e07-07-0680Birchler, J. A., Bhadra, U., Bhadra, M. P., & Auger, D. L. (2001). Dosage-Dependent Gene Regulation in Multicellular Eukaryotes: Implications for Dosage Compensation, Aneuploid Syndromes, and Quantitative Traits. Developmental Biology, 234(2), 275-288. doi:10.1006/dbio.2001.0262Birchler, J. A., Riddle, N. C., Auger, D. L., & Veitia, R. A. (2005). Dosage balance in gene regulation: biological implications. Trends in Genetics, 21(4), 219-226. doi:10.1016/j.tig.2005.02.010Birchler, J. A., & Veitia, R. A. (2012). Gene balance hypothesis: Connecting issues of dosage sensitivity across biological disciplines. Proceedings of the National Academy of Sciences, 109(37), 14746-14753. doi:10.1073/pnas.1207726109Bro, C., Regenberg, B., Lagniel, G., Labarre, J., Montero-Lomelí, M., & Nielsen, J. (2003). Transcriptional, Proteomic, and Metabolic Responses to Lithium in Galactose-grown Yeast Cells. Journal of Biological Chemistry, 278(34), 32141-32149. doi:10.1074/jbc.m304478200Byrne, K. P. (2005). The Yeast Gene Order Browser: Combining curated homology and syntenic context reveals gene fate in polyploid species. Genome Research, 15(10), 1456-1461. doi:10.1101/gr.3672305Carretero-Paulet, L., & Fares, M. A. (2012). Evolutionary Dynamics and Functional Specialization of Plant Paralogs Formed by Whole and Small-Scale Genome Duplications. Molecular Biology and Evolution, 29(11), 3541-3551. doi:10.1093/molbev/mss162Casamayor, A., Serrano, R., Platara, M., Casado, C., Ruiz, A., & Ariño, J. (2012). The role of the Snf1 kinase in the adaptive response of Saccharomyces cerevisiae to alkaline pH stress. Biochemical Journal, 444(1), 39-49. doi:10.1042/bj20112099Chuang, J. H., & Li, H. (2004). Functional Bias and Spatial Organization of Genes in Mutational Hot and Cold Regions in the Human Genome. PLoS Biology, 2(2), e29. doi:10.1371/journal.pbio.0020029Clark, A. G. (1994). Invasion and maintenance of a gene duplication. Proceedings of the National Academy of Sciences, 91(8), 2950-2954. doi:10.1073/pnas.91.8.2950Conant, G. C., & Wolfe, K. H. (2008). Turning a hobby into a job: How duplicated genes find new functions. Nature Reviews Genetics, 9(12), 938-950. doi:10.1038/nrg2482Costanzo, M., Baryshnikova, A., Bellay, J., Kim, Y., Spear, E. D., Sevier, C. S., … Mostafavi, S. (2010). The Genetic Landscape of a Cell. Science, 327(5964), 425-431. doi:10.1126/science.1180823Deatherage, D. E., & Barrick, J. E. (2014). Identification of Mutations in Laboratory-Evolved Microbes from Next-Generation Sequencing Data Using breseq. Engineering and Analyzing Multicellular Systems, 165-188. doi:10.1007/978-1-4939-0554-6_12Fares, M. A. (2015). The origins of mutational robustness. Trends in Genetics, 31(7), 373-381. doi:10.1016/j.tig.2015.04.008Fares, M. A., Keane, O. M., Toft, C., Carretero-Paulet, L., & Jones, G. W. (2013). The Roles of Whole-Genome and Small-Scale Duplications in the Functional Specialization of Saccharomyces cerevisiae Genes. PLoS Genetics, 9(1), e1003176. doi:10.1371/journal.pgen.1003176Freeling, M. (2006). Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome Research, 16(7), 805-814. doi:10.1101/gr.3681406García-Rodríguez, N., Díaz de la Loza, M. del C., Andreson, B., Monje-Casas, F., Rothstein, R., & Wellinger, R. E. (2012). Impaired Manganese Metabolism Causes Mitotic Misregulation. Journal of Biological Chemistry, 287(22), 18717-18729. doi:10.1074/jbc.m112.358309Gemayel, R., Vinces, M. D., Legendre, M., & Verstrepen, K. J. (2010). Variable Tandem Repeats Accelerate Evolution of Coding and Regulatory Sequences. Annual Review of Genetics, 44(1), 445-477. doi:10.1146/annurev-genet-072610-155046Gout, J.-F., Duret, L., & Kahn, D. (2009). Differential Retention of Metabolic Genes Following Whole-Genome Duplication. Molecular Biology and Evolution, 26(5), 1067-1072. doi:10.1093/molbev/msp026Gout, J.-F., Kahn, D., & Duret, L. (2010). The Relationship among Gene Expression, the Evolution of Gene Dosage, and the Rate of Protein Evolution. PLoS Genetics, 6(5), e1000944. doi:10.1371/journal.pgen.1000944Gout, J.-F., & Lynch, M. (2015). Maintenance and Loss of Duplicated Genes by Dosage Subfunctionalization. Molecular Biology and Evolution, 32(8), 2141-2148. doi:10.1093/molbev/msv095Guan, Y., Dunham, M. J., & Troyanskaya, O. G. (2006). Functional Analysis of Gene Duplications inSaccharomyces cerevisiae. Genetics, 175(2), 933-943. doi:10.1534/genetics.106.064329Ibba, M. (1999). Quality Control Mechanisms During Translation. Science, 286(5446), 1893-1897. doi:10.1126/science.286.5446.1893Jansen, M. L. A., Diderich, J. A., Mashego, M., Hassane, A., de Winde, J. H., Daran-Lapujade, P., & Pronk, J. T. (2005). Prolonged selection in aerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae causes a partial loss of glycolytic capacity. Microbiology, 151(5), 1657-1669. doi:10.1099/mic.0.27577-0Kafri, R., Bar-Even, A., & Pilpel, Y. (2005). Transcription control reprogramming in genetic backup circuits. Nature Genetics, 37(3), 295-299. doi:10.1038/ng1523Keane, O. M., Toft, C., Carretero-Paulet, L., Jones, G. W., & Fares, M. A. (2014). Preservation of genetic and regulatory robustness in ancient gene duplicates ofSaccharomyces cerevisiae. Genome Research, 24(11), 1830-1841. doi:10.1101/gr.176792.114Kimura, M., & Takahata, N. (1983). Selective constraint in protein polymorphism: Study of the effectively neutral mutation model by using an improved pseudosampling method. Proceedings of the National Academy of Sciences, 80(4), 1048-1052. doi:10.1073/pnas.80.4.1048Lang, G. I., & Murray, A. W. (2011). Mutation Rates across Budding Yeast Chromosome VI Are Correlated with Replication Timing. Genome Biology and Evolution, 3, 799-811. doi:10.1093/gbe/evr054LaRiviere, F. J. (2001). Uniform Binding of Aminoacyl-tRNAs to Elongation Factor Tu by Thermodynamic Compensation. Science, 294(5540), 165-168. doi:10.1126/science.1064242Liti, G., Carter, D. M., Moses, A. M., Warringer, J., Parts, L., James, S. A., … Louis, E. J. (2009). Population genomics of domestic and wild yeasts. Nature, 458(7236), 337-341. doi:10.1038/nature07743Lohse, M., Bolger, A. M., Nagel, A., Fernie, A. R., Lunn, J. E., Stitt, M., & Usadel, B. (2012). RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic Acids Research, 40(W1), W622-W627. doi:10.1093/nar/gks540Makino, T., McLysaght, A., & Kawata, M. (2013). Genome-wide deserts for copy number variation in vertebrates. Nature Communications, 4(1). doi:10.1038/ncomms3283Marcet-Houben, M., & Gabaldón, T. (2015). Beyond the Whole-Genome Duplication: Phylogenetic Evidence for an Ancient Interspecies Hybridization in the Baker’s Yeast Lineage. PLOS Biology, 13(8), e1002220. doi:10.1371/journal.pbio.1002220Martin, P., Makepeace, K., Hill, S. A., Hood, D. W., & Moxon, E. R. (2005). Microsatellite instability regulates transcription factor binding and gene expression. Proceedings of the National Academy of Sciences, 102(10), 3800-3804. doi:10.1073/pnas.0406805102Mattenberger, F., Sabater-Muñoz, B., Hallsworth, J. E., & Fares, M. A. (2017). Glycerol stress inSaccharomyces cerevisiae: Cellular responses and evolved adaptations. Environmental Microbiology, 19(3), 990-1007. doi:10.1111/1462-2920.13603Mattenberger, F., Sabater-Muñoz, B., Toft, C., & Fares, M. A. (2016). The Phenotypic Plasticity of Duplicated Genes in Saccharomyces cerevisiae and the Origin of Adaptations. G3: Genes|Genomes|Genetics, 7(1), 63-75. doi:10.1534/g3.116.035329Nagalakshmi, U., Wang, Z., Waern, K., Shou, C., Raha, D., Gerstein, M., & Snyder, M. (2008). The Transcriptional Landscape of the Yeast Genome Defined by RNA Sequencing. Science, 320(5881), 1344-1349. doi:10.1126/science.1158441O’Hely, M. (2006). A Diffusion Approach to Approximating Preservation Probabilities for Gene Duplicates. Journal of Mathematical Biology, 53(2), 215-230. doi:10.1007/s00285-006-0001-6Ohno, S. (1999). Gene duplication and the uniqueness of vertebrate genomes circa 1970–1999. Seminars in Cell & Developmental Biology, 10(5), 517-522. doi:10.1006/scdb.1999.0332Papp, B., Pál, C., & Hurst, L. D. (2003). Dosage sensitivity and the evolution of gene families in yeast. Nature, 424(6945), 194-197. doi:10.1038/nature01771Park, C., Qian, W., & Zhang, J. (2012). Genomic evidence for elevated mutation rates in highly expressed genes. EMBO reports, 13(12), 1123-1129. doi:10.1038/embor.2012.165Payne, J. L., & Wagner, A. (2014). The Robustness and Evolvability of Transcription Factor Binding Sites. Science, 343(6173), 875-877. doi:10.1126/science.1249046Pu, S., Wong, J., Turner, B., Cho, E., & Wodak, S. J. (2008). Up-to-date catalogues of yeast protein complexes. Nucleic Acids Research, 37(3), 825-831. doi:10.1093/nar/gkn1005Qian, W., Liao, B.-Y., Chang, A. Y.-F., & Zhang, J. (2010). Maintenance of duplicate genes and their functional redundancy by reduced expression. Trends in Genetics, 26(10), 425-430. doi:10.1016/j.tig.2010.07.002Raghuraman, M. K. (2001). Replication Dynamics of the Yeast Genome. Science, 294(5540), 115-121. doi:10.1126/science.294.5540.115Rando, O. J., & Verstrepen, K. J. (2007). Timescales of Genetic and Epigenetic Inheritance. Cell, 128(4), 655-668. doi:10.1016/j.cell.2007.01.023Reynolds, N. M., Ling, J., Roy, H., Banerjee, R., Repasky, S. E., Hamel, P., & Ibba, M. (2010). Cell-specific differences in the requirements for translation quality control. Proceedings of the National Academy of Sciences, 107(9), 4063-4068. doi:10.1073/pnas.0909640107Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2009). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139-140. doi:10.1093/bioinformatics/btp616Rockman, M. V., & Wray, G. A. (2002). Abundant Raw Material for Cis-Regulatory Evolution in Humans. Molecular Biology and Evolution, 19(11), 1991-2004. doi:10.1093/oxfordjournals.molbev.a004023Ruan, B., Palioura, S., Sabina, J., Marvin-Guy, L., Kochhar, S., LaRossa, R. A., & Soll, D. (2008). Quality control despite mistranslation caused by an ambiguous genetic code. Proceedings of the National Academy of Sciences, 105(43), 16502-16507. doi:10.1073/pnas.0809179105Schuster-Böckler, B., & Lehner, B. (2012). Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature, 488(7412), 504-507. doi:10.1038/nature11273Seoighe, C., & Wolfe, K. H. (1999). Yeast genome evolution in the post-genome era. Current Opinion in Microbiology, 2(5), 548-554. doi:10.1016/s1369-5274(99)00015-6Streelman, J. T., & Kocher, T. D. (2002). Microsatellite variation associated with prolactin expression and growth of salt-challenged tilapia. Physiological Genomics, 9(1), 1-4. doi:10.1152/physiolgenomics.00105.2001Supek, F., & Lehner, B. (2015). Differential DNA mismatch repair underlies mutation rate variation across the human genome. Nature, 521(7550), 81-84. doi:10.1038/nature14173Taylor, J. S., & Raes, J. (2004). Duplication and Divergence: The Evolution of New Genes and Old Ideas. Annual Review of Genetics, 38(1), 615-643. doi:10.1146/annurev.genet.38.072902.092831Tirosh, I., Barkai, N., & Verstrepen, K. J. (2009). Promoter architecture and the evolvability of gene expression. Journal of Biology, 8(11), 95. doi:10.1186/jbiol204Tong, A. H. Y. (2001). Systematic Genetic Analysis with Ordered Arrays of Yeast Deletion Mutants. Science, 294(5550), 2364-2368. doi:10.1126/science.1065810Vinces, M. D., Legendre, M., Caldara, M., Hagihara, M., & Verstrepen, K. J. (2009). Unstable Tandem Repeats in Promoters Confer Transcriptional Evolvability. Science, 324(5931), 1213-1216. doi:10.1126/science.1170097Wapinski, I., Pfeffer, A., Friedman, N., & Regev, A. (2007). Natural history and evolutionary principles of gene duplication in fungi. Nature, 449(7158), 54-61. doi:10.1038/nature06107Wolfe, K. H., & Shields, D. C. (1997). Molecular evidence for an ancient duplication of the entire yeast genome. Nature, 387(6634), 708-713. doi:10.1038/42711Yang, Z. (2007). PAML 4: Phylogenetic Analysis by Maximum Likelihood. Molecular Biology and Evolution, 24(8), 1586-1591. doi:10.1093/molbev/msm088Zaher, H. S., & Green, R. (2008). Quality control by the ribosome following peptide bond formation. Nature, 457(7226), 161-166. doi:10.1038/nature0758

    Coevolution analyses illuminate the dependencies between amino acid sites in the chaperonin system GroES-L

    Get PDF
    [EN] Background: GroESL is a heat-shock protein ubiquitous in bacteria and eukaryotic organelles. This evolutionarily conserved protein is involved in the folding of a wide variety of other proteins in the cytosol, being essential to the cell. The folding activity proceeds through strong conformational changes mediated by the co-chaperonin GroES and ATP. Functions alternative to folding have been previously described for GroEL in different bacterial groups, supporting enormous functional and structural plasticity for this molecule and the existence of a hidden combinatorial code in the protein sequence enabling such functions. Describing this plasticity can shed light on the functional diversity of GroEL. We hypothesize that different overlapping sets of amino acids coevolve within GroEL, GroES and between both these proteins. Shifts in these coevolutionary relationships may inevitably lead to evolution of alternative functions. Results: We conducted the first coevolution analyses in an extensive bacterial phylogeny, revealing complex networks of evolutionary dependencies between residues in GroESL. These networks differed among bacterial groups and involved amino acid sites with functional importance and others with previously unsuspected functional potential. Coevolutionary networks formed statistically independent units among bacterial groups and map to structurally continuous regions in the protein, suggesting their functional link. Sites involved in coevolution fell within narrow structural regions, supporting dynamic combinatorial functional links involving similar protein domains. Moreover, coevolving sites within a bacterial group mapped to regions previously identified as involved in folding-unrelated functions, and thus, coevolution may mediate alternative functions. Conclusions: Our results highlight the evolutionary plasticity of GroEL across the entire bacterial phylogeny. Evidence on the functional importance of coevolving sites illuminates the as yet unappreciated functional diversity of proteins.This study was supported by Science Foundation Ireland (10/RFP/GEN2685) and a grant from the Ministerio de Ciencia e Innovacion (BFU2009-12022) to MAF. MXRG is supported by the JAE DOC-2009, Ministerio de Ciencia e Innovacion. We thank two anonymous reviewers for useful comments to improve this study presentation.Ruíz González, MJ.; Fares Riaño, MA. (2013). Coevolution analyses illuminate the dependencies between amino acid sites in the chaperonin system GroES-L. BMC Evolutionary Biology. 13(156):1-13. https://doi.org/10.1186/1471-2148-13-15611313156Lund, P. A. (2009). Multiple chaperonins in bacteria – why so many? FEMS Microbiology Reviews, 33(4), 785-800. doi:10.1111/j.1574-6976.2009.00178.xRadford, S. E. (2006). GroEL: More than Just a Folding Cage. Cell, 125(5), 831-833. doi:10.1016/j.cell.2006.05.021Lin, Z., & Rye, H. S. (2006). GroEL-Mediated Protein Folding: Making the Impossible, Possible. Critical Reviews in Biochemistry and Molecular Biology, 41(4), 211-239. doi:10.1080/10409230600760382Mayhew, M., da Silva, A. C. R., Martin, J., Erdjument-Bromage, H., Tempst, P., & Hartl, F. U. (1996). Protein folding in the central cavity of the GroEL–GroES chaperonin complex. Nature, 379(6564), 420-426. doi:10.1038/379420a0VanBogelen, R. A., Acton, M. A., & Neidhardt, F. C. (1987). Induction of the heat shock regulon does not produce thermotolerance in Escherichia coli. Genes & Development, 1(6), 525-531. doi:10.1101/gad.1.6.525Kerner, M. J., Naylor, D. J., Ishihama, Y., Maier, T., Chang, H.-C., Stines, A. P., … Hartl, F. U. (2005). Proteome-wide Analysis of Chaperonin-Dependent Protein Folding in Escherichia coli. Cell, 122(2), 209-220. doi:10.1016/j.cell.2005.05.028Braig, K., Otwinowski, Z., Hegde, R., Boisvert, D. C., Joachimiak, A., Horwich, A. L., & Sigler, P. B. (1994). The crystal structure of the bacterial chaperonln GroEL at 2.8 Å. Nature, 371(6498), 578-586. doi:10.1038/371578a0Hunt, J. F., Weaver, A. J., Landry, S. J., Gierasch, L., & Deisenhofer, J. (1996). The crystal structure of the GroES co-chaperonin at 2.8 Å resolution. Nature, 379(6560), 37-45. doi:10.1038/379037a0Xu, Z., Horwich, A. L., & Sigler, P. B. (1997). The crystal structure of the asymmetric GroEL–GroES–(ADP)7 chaperonin complex. Nature, 388(6644), 741-750. doi:10.1038/41944Thirumalai, D., & Lorimer, G. H. (2001). Chaperonin-Mediated Protein Folding. Annual Review of Biophysics and Biomolecular Structure, 30(1), 245-269. doi:10.1146/annurev.biophys.30.1.245Ellis, R. J. (2005). Chaperomics: In Vivo GroEL Function Defined. Current Biology, 15(17), R661-R663. doi:10.1016/j.cub.2005.08.025Ellis, R. J. (s. f.). Protein Misassembly. Molecular Aspects of the Stress Response: Chaperones, Membranes and Networks, 1-13. doi:10.1007/978-0-387-39975-1_1Horwich, A. L., Fenton, W. A., Chapman, E., & Farr, G. W. (2007). Two Families of Chaperonin: Physiology and Mechanism. Annual Review of Cell and Developmental Biology, 23(1), 115-145. doi:10.1146/annurev.cellbio.23.090506.123555Tuccinardi, D., Fioriti, E., Manfrini, S., D’Amico, E., & Pozzilli, P. (2011). DiaPep277 peptide therapy in the context of other immune intervention trials in type 1 diabetes. Expert Opinion on Biological Therapy, 11(9), 1233-1240. doi:10.1517/14712598.2011.599319Zonneveld-Huijssoon, E., Roord, S. T. A., de Jager, W., Klein, M., Albani, S., Anderton, S. M., … Prakken, B. J. (2011). Bystander suppression of experimental arthritis by nasal administration of a heat shock protein peptide. Annals of the Rheumatic Diseases, 70(12), 2199-2206. doi:10.1136/ard.2010.136994Ronaghy, A., de Jager, W., Zonneveld-Huijssoon, E., Klein, M. R., van Wijk, F., Rijkers, G. T., … Prakken, B. J. (2011). Vaccination leads to an aberrant FOXP3 T-cell response in non-remitting juvenile idiopathic arthritis. Annals of the Rheumatic Diseases, 70(11), 2037-2043. doi:10.1136/ard.2010.145151George, R., Kelly, S. M., Price, N. C., Erbse, A., Fisher, M., & Lund, P. A. (2004). Three GroEL homologues from Rhizobium leguminosarum have distinct in vitro properties. Biochemical and Biophysical Research Communications, 324(2), 822-828. doi:10.1016/j.bbrc.2004.09.140Rodríguez-Quiñones, F., Maguire, M., Wallington, E. J., Gould, P. S., Yerko, V., Downie, J. A., & Lund, P. A. (2005). Two of the three groEL homologues in Rhizobium leguminosarum are dispensable for normal growth. Archives of Microbiology, 183(4), 253-265. doi:10.1007/s00203-005-0768-7Ojha, A., Anand, M., Bhatt, A., Kremer, L., Jacobs, W. R., & Hatfull, G. F. (2005). GroEL1: A Dedicated Chaperone Involved in Mycolic Acid Biosynthesis during Biofilm Formation in Mycobacteria. Cell, 123(5), 861-873. doi:10.1016/j.cell.2005.09.012Bittner, A. N., Foltz, A., & Oke, V. (2006). Only One of Five groEL Genes Is Required for Viability and Successful Symbiosis in Sinorhizobium meliloti. Journal of Bacteriology, 189(5), 1884-1889. doi:10.1128/jb.01542-06Gould, P. S., Burgar, H. R., & Lund, P. A. (2007). Homologous cpn60 genes in Rhizobium leguminosarum are not functionally equivalent. Cell Stress & Chaperones, 12(2), 123. doi:10.1379/csc-227r.1Li, J., Wang, Y., Zhang, C. -y., Zhang, W. -y., Jiang, D. -m., Wu, Z. -h., … Li, Y. -z. (2010). Myxococcus xanthus Viability Depends on GroEL Supplied by Either of Two Genes, but the Paralogs Have Different Functions during Heat Shock, Predation, and Development. Journal of Bacteriology, 192(7), 1875-1881. doi:10.1128/jb.01458-09Wang, Y., Zhang, W., Zhang, Z., Li, J., Li, Z., Tan, Z., … Li, Y. (2013). Mechanisms Involved in the Functional Divergence of Duplicated GroEL Chaperonins in Myxococcus xanthus DK1622. PLoS Genetics, 9(2), e1003306. doi:10.1371/journal.pgen.1003306Fares, M. A., Barrio, E., Sabater-Muñoz, B., & Moya, A. (2002). The Evolution of the Heat-Shock Protein GroEL from Buchnera, the Primary Endosymbiont of Aphids, Is Governed by Positive Selection. Molecular Biology and Evolution, 19(7), 1162-1170. doi:10.1093/oxfordjournals.molbev.a004174McNally, D., & Fares, M. A. (2007). In silico identification of functional divergence between the multiple groEL gene paralogs in Chlamydiae. BMC Evolutionary Biology, 7(1), 81. doi:10.1186/1471-2148-7-81Liu, H., Kovács, E., & Lund, P. A. (2009). Characterisation of mutations in GroES that allow GroEL to function as a single ring. FEBS Letters, 583(14), 2365-2371. doi:10.1016/j.febslet.2009.06.027Fujiwara, K., Ishihama, Y., Nakahigashi, K., Soga, T., & Taguchi, H. (2010). A systematic survey of in vivo obligate chaperonin-dependent substrates. The EMBO Journal, 29(9), 1552-1564. doi:10.1038/emboj.2010.52Buckle, A. M., Zahn, R., & Fersht, A. R. (1997). A structural model for GroEL-polypeptide recognition. Proceedings of the National Academy of Sciences, 94(8), 3571-3575. doi:10.1073/pnas.94.8.3571Fenton, W. A., Kashi, Y., Furtak, K., & Norwich, A. L. (1994). Residues in chaperonin GroEL required for polypeptide binding and release. Nature, 371(6498), 614-619. doi:10.1038/371614a0Gloor, G. B., Martin, L. C., Wahl, L. M., & Dunn, S. D. (2005). Mutual Information in Protein Multiple Sequence Alignments Reveals Two Classes of Coevolving Positions†. Biochemistry, 44(19), 7156-7165. doi:10.1021/bi050293eDavis, B. H., Poon, A. F. Y., & Whitlock, M. C. (2009). Compensatory mutations are repeatable and clustered within proteins. Proceedings of the Royal Society B: Biological Sciences, 276(1663), 1823-1827. doi:10.1098/rspb.2008.1846Codoñer, F. M., O’Dea, S., & Fares, M. A. (2008). Reducing the false positive rate in the non-parametric analysis of molecular coevolution. BMC Evolutionary Biology, 8(1), 106. doi:10.1186/1471-2148-8-106Halabi, N., Rivoire, O., Leibler, S., & Ranganathan, R. (2009). Protein Sectors: Evolutionary Units of Three-Dimensional Structure. Cell, 138(4), 774-786. doi:10.1016/j.cell.2009.07.038Hu, Y., Henderson, B., Lund, P. A., Tormay, P., Ahmed, M. T., Gurcha, S. S., … Coates, A. R. M. (2008). A Mycobacterium tuberculosis Mutant Lacking the groEL Homologue cpn60.1 Is Viable but Fails To Induce an Inflammatory Response in Animal Models of Infection. Infection and Immunity, 76(4), 1535-1546. doi:10.1128/iai.01078-07Hogenhout, S. A., van der Wilk, F., Verbeek, M., Goldbach, R. W., & van den Heuvel, J. F. J. M. (2000). Identifying the Determinants in the Equatorial Domain of Buchnera GroEL Implicated in Binding Potato Leafroll Virus. Journal of Virology, 74(10), 4541-4548. doi:10.1128/jvi.74.10.4541-4548.2000Buck, M. J., & Atchley, W. R. (2005). Networks of Coevolving Sites in Structural and Functional Domains of Serpin Proteins. Molecular Biology and Evolution, 22(7), 1627-1634. doi:10.1093/molbev/msi157Gloor, G. B., Tyagi, G., Abrassart, D. M., Kingston, A. J., Fernandes, A. D., Dunn, S. D., & Brandl, C. J. (2010). Functionally Compensating Coevolving Positions Are Neither Homoplasic Nor Conserved in Clades. Molecular Biology and Evolution, 27(5), 1181-1191. doi:10.1093/molbev/msq004Tillier, E. R. M., & Charlebois, R. L. (2009). The human protein coevolution network. Genome Research, 19(10), 1861-1871. doi:10.1101/gr.092452.109Fares, M. A., & McNally, D. (2006). CAPS: coevolution analysis using protein sequences. Bioinformatics, 22(22), 2821-2822. doi:10.1093/bioinformatics/btl493Travers, S. A. A., & Fares, M. A. (2007). Functional Coevolutionary Networks of the Hsp70–Hop–Hsp90 System Revealed through Computational Analyses. Molecular Biology and Evolution, 24(4), 1032-1044. doi:10.1093/molbev/msm022Travers, S. A. A., Tully, D. C., McCormack, G. P., & Fares, M. A. (2007). A Study of the Coevolutionary Patterns Operating within the env Gene of the HIV-1 Group M Subtypes. Molecular Biology and Evolution, 24(12), 2787-2801. doi:10.1093/molbev/msm213Tillier, E. R. M., & Lui, T. W. H. (2003). Using multiple interdependency to separate functional from phylogenetic correlations in protein alignments. Bioinformatics, 19(6), 750-755. doi:10.1093/bioinformatics/btg072Little, D. Y., & Chen, L. (2009). Identification of Coevolving Residues and Coevolution Potentials Emphasizing Structure, Bond Formation and Catalytic Coordination in Protein Evolution. PLoS ONE, 4(3), e4762. doi:10.1371/journal.pone.0004762Tang, Y.-C., Chang, H.-C., Roeben, A., Wischnewski, D., Wischnewski, N., Kerner, M. J., … Hayer-Hartl, M. (2006). Structural Features of the GroEL-GroES Nano-Cage Required for Rapid Folding of Encapsulated Protein. Cell, 125(5), 903-914. doi:10.1016/j.cell.2006.04.027Yifrach, O., & Horovitz, A. (1995). Nested cooperativity in the ATPase activity of the oligomeric chaperonin GroEL. Biochemistry, 34(16), 5303-5308. doi:10.1021/bi00016a001Horovitz, A., Fridmann, Y., Kafri, G., & Yifrach, O. (2001). Review: Allostery in Chaperonins. Journal of Structural Biology, 135(2), 104-114. doi:10.1006/jsbi.2001.4377Weissman, J. S., Hohl, C. M., Kovalenko, O., Kashi, Y., Chen, S., Braig, K., … Norwich, A. L. (1995). Mechanism of GroEL action: Productive release of polypeptide from a sequestered position under groes. Cell, 83(4), 577-587. doi:10.1016/0092-8674(95)90098-5Fares, M. A., Ruiz-González, M. X., & Labrador, J. P. (2011). Protein coadaptation and the design of novel approaches to identify protein-protein interactions. IUBMB Life, 63(4), 264-271. doi:10.1002/iub.455Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., … Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947-2948. doi:10.1093/bioinformatics/btm404Thompson, J. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25(24), 4876-4882. doi:10.1093/nar/25.24.4876Smoot, M. E., Ono, K., Ruscheinski, J., Wang, P.-L., & Ideker, T. (2010). Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics, 27(3), 431-432. doi:10.1093/bioinformatics/btq675Fares, M. A., & Travers, S. A. A. (2006). A Novel Method for Detecting Intramolecular Coevolution: Adding a Further Dimension to Selective Constraints Analyses. Genetics, 173(1), 9-23. doi:10.1534/genetics.105.05324

    The Role of Ancestral Duplicated Genes in Adaptation to Growth on Lactate, a Non-Fermentable Carbon Source for the Yeast Saccharomyces cerevisiae

    Full text link
    [EN] The cell central metabolism has been shaped throughout evolutionary times when facing challenges from the availability of resources. In the budding yeast, Saccharomyces cerevisiae, a set of duplicated genes originating from an ancestral whole-genome and several coetaneous small-scale duplication events drive energy transfer through glucose metabolism as the main carbon source either by fermentation or respiration. These duplicates (~a third of the genome) have been dated back to approximately 100 MY, allowing for enough evolutionary time to diverge in both sequence and function. Gene duplication has been proposed as a molecular mechanism of biological innovation, maintaining balance between mutational robustness and evolvability of the system. However, some questions concerning the molecular mechanisms behind duplicated genes transcriptional plasticity and functional divergence remain unresolved. In this work we challenged S. cerevisiae to the use of lactic acid/lactate as the sole carbon source and performed a small adaptive laboratory evolution to this non-fermentative carbon source, determining phenotypic and transcriptomic changes. We observed growth adaptation to acidic stress, by reduction of growth rate and increase in biomass production, while the transcriptomic response was mainly driven by repression of the whole-genome duplicates, those implied in glycolysis and overexpression of ROS response. The contribution of several duplicated pairs to this carbon source switch and acidic stress is also discussed.This research was funded by Spanish National Plan for Scientific and Technical Research and Innovation from the Spanish Ministry of Economy and Competitiveness (MINECOFEDER), actually the Ministry of Science and Innovation (MCIN), Spanish Research Agency (AEI), MCIN/AEI/10.13039/501100011033 and ERDF A way of making Europe (FEDER "Una forma de hacer Europa") with grant number BFU2015-66073-P (to M.A.F.) and Generalitat Valenciana, Conselleria de Innovacion, Universidades y Sociedad Digital with grant number SEJI/2018/046 (to C.T.). F.M. was supported by a Spanish PhD Fellowship number FPI BES-2016-076677, from MCIN/AEI/10.13039/501100011033 and ESF "Investing in your future".Mattenberger, F.; Fares Riaño, MA.; Toft, C.; Sabater-Muñoz, B. (2021). The Role of Ancestral Duplicated Genes in Adaptation to Growth on Lactate, a Non-Fermentable Carbon Source for the Yeast Saccharomyces cerevisiae. International Journal of Molecular Sciences. 22(22):1-17. https://doi.org/10.3390/ijms222212293S117222

    Expression properties exhibit correlated patterns with the fate of duplicated genes, their divergence, and transcriptional plasticity in Saccharomycotina

    Full text link
    [EN] Gene duplication is an important source of novelties and genome complexity. What genes are preserved as duplicated through long evolutionary times can shape the evolution of innovations. Identifying factors that influence gene duplicability is therefore an important aim in evolutionary biology. Here, we show that in the yeast Saccharomyces cerevisiae the levels of gene expression correlate with gene duplicability, its divergence, and transcriptional plasticity. Genes that were highly expressed before duplication are more likely to be preserved as duplicates for longer evolutionary times and wider phylogenetic ranges than genes that were lowly expressed. Duplicates with higher expression levels exhibit greater divergence between their gene copies. Duplicates that exhibit higher expression divergence are those enriched for TATA-containing promoters. These duplicates also show transcriptional plasticity, which seems to be involved in the origin of adaptations to environmental stresses in yeast. While the expression properties of genes strongly affect their duplicability, divergence and transcriptional plasticity are enhanced after gene duplication. We conclude that highly expressed genes are more likely to be preserved as duplicates due to their promoter architectures, their greater tolerance to expression noise, and their ability to reduce the noise-plasticity conflict.We would like to thank members of Fares' Lab for a careful reading and discussion of the results in the manuscript. We are also grateful to colleagues at Trinity College for helpful discussions. This work was supported by a grant from the Spanish Ministerio de Economia y Competitividad (MINECO-FEDER; BFU2015-66073-P) to M.A.F. F.M. is supported by a PhD grant from the Spanish Ministerio de Economia y Competitividad (reference: BES-2016-076677). C.T. was supported by a grant Juan de la Cierva from the Spanish Ministerio de Economia y Competitividad (reference: JCA-2012-14056).Mattenberger, F.; Sabater-Muñoz, B.; Toft, C.; Sablok, G.; Fares Riaño, MA. (2017). Expression properties exhibit correlated patterns with the fate of duplicated genes, their divergence, and transcriptional plasticity in Saccharomycotina. DNA Research. 24(6):559-570. https://doi.org/10.1093/dnares/dsx025S559570246Ohno, S. (1999). Gene duplication and the uniqueness of vertebrate genomes circa 1970–1999. Seminars in Cell & Developmental Biology, 10(5), 517-522. doi:10.1006/scdb.1999.0332Lynch, M. (2000). The Evolutionary Fate and Consequences of Duplicate Genes. Science, 290(5494), 1151-1155. doi:10.1126/science.290.5494.1151Otto, S. P., & Whitton, J. (2000). Polyploid Incidence and Evolution. Annual Review of Genetics, 34(1), 401-437. doi:10.1146/annurev.genet.34.1.401Carretero-Paulet, L., & Fares, M. A. (2012). Evolutionary Dynamics and Functional Specialization of Plant Paralogs Formed by Whole and Small-Scale Genome Duplications. Molecular Biology and Evolution, 29(11), 3541-3551. doi:10.1093/molbev/mss162Cui, L. (2006). Widespread genome duplications throughout the history of flowering plants. Genome Research, 16(6), 738-749. doi:10.1101/gr.4825606Holub, E. B. (2001). The arms race is ancient history in Arabidopsis, the wildflower. Nature Reviews Genetics, 2(7), 516-527. doi:10.1038/35080508Lespinet, O. (2002). The Role of Lineage-Specific Gene Family Expansion in the Evolution of Eukaryotes. Genome Research, 12(7), 1048-1059. doi:10.1101/gr.174302Wendel, J. F. (2000). Plant Molecular Biology, 42(1), 225-249. doi:10.1023/a:1006392424384Soltis, D. E., Albert, V. A., Leebens-Mack, J., Bell, C. D., Paterson, A. H., Zheng, C., … Soltis, P. S. (2009). Polyploidy and angiosperm diversification. American Journal of Botany, 96(1), 336-348. doi:10.3732/ajb.0800079De Peer, Y. V. (2004). Computational approaches to unveiling ancient genome duplications. Nature Reviews Genetics, 5(10), 752-763. doi:10.1038/nrg1449Hoegg, S., Brinkmann, H., Taylor, J. S., & Meyer, A. (2004). Phylogenetic Timing of the Fish-Specific Genome Duplication Correlates with the Diversification of Teleost Fish. Journal of Molecular Evolution, 59(2), 190-203. doi:10.1007/s00239-004-2613-zGrant, S. G. N. (2016). The molecular evolution of the vertebrate behavioural repertoire. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1685), 20150051. doi:10.1098/rstb.2015.0051Green, S. A., & Bronner, M. E. (2013). Gene duplications and the early evolution of neural crest development. Seminars in Cell & Developmental Biology, 24(2), 95-100. doi:10.1016/j.semcdb.2012.12.006Conant, G. C., & Wolfe, K. H. (2007). Increased glycolytic flux as an outcome of whole‐genome duplication in yeast. Molecular Systems Biology, 3(1), 129. doi:10.1038/msb4100170Wolfe, K. H., & Shields, D. C. (1997). Molecular evidence for an ancient duplication of the entire yeast genome. Nature, 387(6634), 708-713. doi:10.1038/42711Fares, M. A., Keane, O. M., Toft, C., Carretero-Paulet, L., & Jones, G. W. (2013). The Roles of Whole-Genome and Small-Scale Duplications in the Functional Specialization of Saccharomyces cerevisiae Genes. PLoS Genetics, 9(1), e1003176. doi:10.1371/journal.pgen.1003176Blanc, G., & Wolfe, K. H. (2004). Widespread Paleopolyploidy in Model Plant Species Inferred from Age Distributions of Duplicate Genes. The Plant Cell, 16(7), 1667-1678. doi:10.1105/tpc.021345Blanc, G., & Wolfe, K. H. (2004). Functional Divergence of Duplicated Genes Formed by Polyploidy during Arabidopsis Evolution. The Plant Cell, 16(7), 1679-1691. doi:10.1105/tpc.021410Conant, G. C., & Wolfe, K. H. (2008). Turning a hobby into a job: How duplicated genes find new functions. Nature Reviews Genetics, 9(12), 938-950. doi:10.1038/nrg2482Fares, M. A., Byrne, K. P., & Wolfe, K. H. (2005). Rate Asymmetry After Genome Duplication Causes Substantial Long-Branch Attraction Artifacts in the Phylogeny of Saccharomyces Species. Molecular Biology and Evolution, 23(2), 245-253. doi:10.1093/molbev/msj027Freeling, M. (2009). Bias in Plant Gene Content Following Different Sorts of Duplication: Tandem, Whole-Genome, Segmental, or by Transposition. Annual Review of Plant Biology, 60(1), 433-453. doi:10.1146/annurev.arplant.043008.092122Conant, G. C., Birchler, J. A., & Pires, J. C. (2014). Dosage, duplication, and diploidization: clarifying the interplay of multiple models for duplicate gene evolution over time. Current Opinion in Plant Biology, 19, 91-98. doi:10.1016/j.pbi.2014.05.008Keane, O. M., Toft, C., Carretero-Paulet, L., Jones, G. W., & Fares, M. A. (2014). Preservation of genetic and regulatory robustness in ancient gene duplicates ofSaccharomyces cerevisiae. Genome Research, 24(11), 1830-1841. doi:10.1101/gr.176792.114Fares, M. A. (2015). The origins of mutational robustness. Trends in Genetics, 31(7), 373-381. doi:10.1016/j.tig.2015.04.008Gout, J.-F., & Lynch, M. (2015). Maintenance and Loss of Duplicated Genes by Dosage Subfunctionalization. Molecular Biology and Evolution, 32(8), 2141-2148. doi:10.1093/molbev/msv095Altschul, S. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389-3402. doi:10.1093/nar/25.17.3389Byrne, K. P. (2005). The Yeast Gene Order Browser: Combining curated homology and syntenic context reveals gene fate in polyploid species. Genome Research, 15(10), 1456-1461. doi:10.1101/gr.3672305Lohse, M., Bolger, A. M., Nagel, A., Fernie, A. R., Lunn, J. E., Stitt, M., & Usadel, B. (2012). RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic Acids Research, 40(W1), W622-W627. doi:10.1093/nar/gks540Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2009). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139-140. doi:10.1093/bioinformatics/btp616Anders, S., & Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biology, 11(10). doi:10.1186/gb-2010-11-10-r106Brion, C., Pflieger, D., Souali-Crespo, S., Friedrich, A., & Schacherer, J. (2016). Differences in environmental stress response among yeasts is consistent with species-specific lifestyles. Molecular Biology of the Cell, 27(10), 1694-1705. doi:10.1091/mbc.e15-12-0816Linde, J., Duggan, S., Weber, M., Horn, F., Sieber, P., Hellwig, D., … Kurzai, O. (2015). Defining the transcriptomic landscape of Candida glabrata by RNA-Seq. Nucleic Acids Research, 43(3), 1392-1406. doi:10.1093/nar/gku1357Seoighe, C., & Wolfe, K. H. (1999). Yeast genome evolution in the post-genome era. Current Opinion in Microbiology, 2(5), 548-554. doi:10.1016/s1369-5274(99)00015-6Aury, J.-M., Jaillon, O., Duret, L., Noel, B., Jubin, C., Porcel, B. M., … Wincker, P. (2006). Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia. Nature, 444(7116), 171-178. doi:10.1038/nature05230Gout, J.-F., Kahn, D., & Duret, L. (2010). The Relationship among Gene Expression, the Evolution of Gene Dosage, and the Rate of Protein Evolution. PLoS Genetics, 6(5), e1000944. doi:10.1371/journal.pgen.1000944McGrath, C. L., Gout, J.-F., Doak, T. G., Yanagi, A., & Lynch, M. (2014). Insights into Three Whole-Genome Duplications Gleaned from theParamecium caudatumGenome Sequence. Genetics, 197(4), 1417-1428. doi:10.1534/genetics.114.163287McGrath, C. L., Gout, J.-F., Johri, P., Doak, T. G., & Lynch, M. (2014). Differential retention and divergent resolution of duplicate genes following whole-genome duplication. Genome Research, 24(10), 1665-1675. doi:10.1101/gr.173740.114Albert, F. W., Muzzey, D., Weissman, J. S., & Kruglyak, L. (2014). Genetic Influences on Translation in Yeast. PLoS Genetics, 10(10), e1004692. doi:10.1371/journal.pgen.1004692Gout, J.-F., Duret, L., & Kahn, D. (2009). Differential Retention of Metabolic Genes Following Whole-Genome Duplication. Molecular Biology and Evolution, 26(5), 1067-1072. doi:10.1093/molbev/msp026Papp, B., Pál, C., & Hurst, L. D. (2003). Dosage sensitivity and the evolution of gene families in yeast. Nature, 424(6945), 194-197. doi:10.1038/nature01771Qian, W., Liao, B.-Y., Chang, A. Y.-F., & Zhang, J. (2010). Maintenance of duplicate genes and their functional redundancy by reduced expression. Trends in Genetics, 26(10), 425-430. doi:10.1016/j.tig.2010.07.002Birchler, J. A., & Veitia, R. A. (2012). Gene balance hypothesis: Connecting issues of dosage sensitivity across biological disciplines. Proceedings of the National Academy of Sciences, 109(37), 14746-14753. doi:10.1073/pnas.1207726109Pu, S., Wong, J., Turner, B., Cho, E., & Wodak, S. J. (2008). Up-to-date catalogues of yeast protein complexes. Nucleic Acids Research, 37(3), 825-831. doi:10.1093/nar/gkn1005Scannell, D. R., Byrne, K. P., Gordon, J. L., Wong, S., & Wolfe, K. H. (2006). Multiple rounds of speciation associated with reciprocal gene loss in polyploid yeasts. Nature, 440(7082), 341-345. doi:10.1038/nature04562Landry, C. R., Lemos, B., Rifkin, S. A., Dickinson, W. J., & Hartl, D. L. (2007). Genetic Properties Influencing the Evolvability of Gene Expression. Science, 317(5834), 118-121. doi:10.1126/science.1140247Lehner, B. (2010). Conflict between Noise and Plasticity in Yeast. PLoS Genetics, 6(11), e1001185. doi:10.1371/journal.pgen.1001185Mattenberger, F., Sabater-Muñoz, B., Hallsworth, J. E., & Fares, M. A. (2017). Glycerol stress inSaccharomyces cerevisiae: Cellular responses and evolved adaptations. Environmental Microbiology, 19(3), 990-1007. doi:10.1111/1462-2920.13603Mattenberger, F., Sabater-Muñoz, B., Toft, C., & Fares, M. A. (2016). The Phenotypic Plasticity of Duplicated Genes in Saccharomyces cerevisiae and the Origin of Adaptations. G3: Genes|Genomes|Genetics, 7(1), 63-75. doi:10.1534/g3.116.035329Blake, W. J., Balázsi, G., Kohanski, M. A., Isaacs, F. J., Murphy, K. F., Kuang, Y., … Collins, J. J. (2006). Phenotypic Consequences of Promoter-Mediated Transcriptional Noise. Molecular Cell, 24(6), 853-865. doi:10.1016/j.molcel.2006.11.003Raser, J. M. (2005). Noise in Gene Expression: Origins, Consequences, and Control. Science, 309(5743), 2010-2013. doi:10.1126/science.1105891Newman, J. R. S., Ghaemmaghami, S., Ihmels, J., Breslow, D. K., Noble, M., DeRisi, J. L., & Weissman, J. S. (2006). Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature, 441(7095), 840-846. doi:10.1038/nature04785Tirosh, I., Weinberger, A., Carmi, M., & Barkai, N. (2006). A genetic signature of interspecies variations in gene expression. Nature Genetics, 38(7), 830-834. doi:10.1038/ng181

    Molecular evolution of psbA gene in ferns: unraveling selective pressure and co-evolutionary

    Get PDF
    Background: The photosynthetic oxygen-evolving photo system II (PS II) produces almost the entire oxygen in the atmosphere. This unique biochemical system comprises a functional core complex that is encoded by psbA and other genes. Unraveling the evolutionary dynamics of this gene is of particular interest owing to its direct role in oxygen production. psbA underwent gene duplication in leptosporangiates, in which both copies have been preserved since. Because gene duplication is often followed by the non-fictionalization of one of the copies and its subsequent erosion, preservation of both psbA copies pinpoint functional or regulatory specialization events. The aim of this study was to investigate the molecular evolution of psbA among fern lineages. Results: We sequenced psbA, which encodes D1 protein in the core complex of PSII, in 20 species representing 8 orders of extant ferns; then we searched for selection and convolution signatures in psbA across the 11 fern orders. Collectively, our results indicate that: (1) selective constraints among D1 protein relaxed after the duplication in 4 leptosporangiate orders; (2) a handful positively selected codons were detected within species of single copy psbA, but none in duplicated ones; (3) a few sites among D1 protein were involved in co-evolution process which may intimate significant functional/structural communications between them. Conclusions: The strong competition between ferns and angiosperms for light may have been the main cause for a continuous fixation of adaptive amino acid changes in psbA, in particular after its duplication. Alternatively, a single psbA copy may have undergone bursts of adaptive changes at the molecular level to overcome angiosperms competition. The strong signature of positive Darwinian selection in a major part of D1 protein is testament to this. At the same time, species own two psbA copies hardly have positive selection signals among the D1 protein coding sequences. In this study, eleven co-evolving sites have been detected via different molecules, which may be more important than others.We thank Dr. Yefu Wang at State Key Laboratory of Virology, College of Life Sciences, Wuhan University, China, for the guidance for wording, and we also thank Bo Wang and Dr. Lei Gao at the Wuhan Botanical Garden, Chinese Academy of Sciences, China, for the experimental assistance. We thank Dr. Jianqiang Li at the Wuhan Botanical Garden, Chinese Academy of Sciences, China, for the advices on species sampling. We appreciate two anonymous reviewers and other editors for their helpful suggestions. The present work was financially supported by the National Nature Science Foundation of China (No. 30970290, 31070594), and by the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KSCX2-EW-J-20, KSCX2-YW-Z-0940). Dr. Mario A. Fares was supported by Spanish Ministerio de Ciencia e Inovacion (No. BFU2009-12022) and Research Frontiers Program (No. 10/RFP/GEN2685) from Science Foundation Ireland.Sen, L.; Fares Riaño, MA.; Su, Y.; Wang, T. (2012). Molecular evolution of psbA gene in ferns: unraveling selective pressure and co-evolutionary. BMC Evolutionary Biology. 12(145):1-13. https://doi.org/10.1186/1471-2148-12-145S11312145Hohmann-Marriott, M. F., & Blankenship, R. E. (2011). Evolution of Photosynthesis. Annual Review of Plant Biology, 62(1), 515-548. doi:10.1146/annurev-arplant-042110-103811Minai, L., Wostrikoff, K., Wollman, F.-A., & Choquet, Y. (2005). Chloroplast Biogenesis of Photosystem II Cores Involves a Series of Assembly-Controlled Steps That Regulate Translation. The Plant Cell, 18(1), 159-175. doi:10.1105/tpc.105.037705Guskov, A., Kern, J., Gabdulkhakov, A., Broser, M., Zouni, A., & Saenger, W. (2009). Cyanobacterial photosystem II at 2.9-Å resolution and the role of quinones, lipids, channels and chloride. Nature Structural & Molecular Biology, 16(3), 334-342. doi:10.1038/nsmb.1559Stein, D. B., Conant, D. S., Ahearn, M. E., Jordan, E. T., Kirch, S. A., Hasebe, M., … Thomson, J. A. (1992). Structural rearrangements of the chloroplast genome provide an important phylogenetic link in ferns. Proceedings of the National Academy of Sciences, 89(5), 1856-1860. doi:10.1073/pnas.89.5.1856Gao, L., Yi, X., Yang, Y.-X., Su, Y.-J., & Wang, T. (2009). Complete chloroplast genome sequence of a tree fern Alsophila spinulosa: insights into evolutionary changes in fern chloroplast genomes. BMC Evolutionary Biology, 9(1), 130. doi:10.1186/1471-2148-9-130Wolf, P. G. (2003). Complete Nucleotide Sequence of the Chloroplast Genome from a Leptosporangiate Fern, Adiantum capillus-veneris L. DNA Research, 10(2), 59-65. doi:10.1093/dnares/10.2.59Wolf, P. G., Roper, J. M., & Duffy, A. M. (2010). The evolution of chloroplast genome structure in ferns. Genome, 53(9), 731-738. doi:10.1139/g10-061Lynch, M. (2000). The Evolutionary Fate and Consequences of Duplicate Genes. Science, 290(5494), 1151-1155. doi:10.1126/science.290.5494.1151Tautz, D., & Domazet-Lošo, T. (2011). The evolutionary origin of orphan genes. Nature Reviews Genetics, 12(10), 692-702. doi:10.1038/nrg3053Gravemann, S., Schnipper, N., Meyer, H., Vaya, A., Nowaczyk, M. J. M., Rajab, A., … Hoffmann, K. (2010). Dosage effect of zero to three functional LBR-genes in vivo and in vitro. Nucleus, 1(2), 179-189. doi:10.4161/nucl.1.2.11113Colbourne, J. K., Pfrender, M. E., Gilbert, D., Thomas, W. K., Tucker, A., Oakley, T. H., … Basu, M. K. (2011). The Ecoresponsive Genome of Daphnia pulex. Science, 331(6017), 555-561. doi:10.1126/science.1197761Crisp, M. D., & Cook, L. G. (2011). Cenozoic extinctions account for the low diversity of extant gymnosperms compared with angiosperms. New Phytologist, 192(4), 997-1009. doi:10.1111/j.1469-8137.2011.03862.xSchuettpelz, E., & Pryer, K. M. (2009). Evidence for a Cenozoic radiation of ferns in an angiosperm-dominated canopy. Proceedings of the National Academy of Sciences, 106(27), 11200-11205. doi:10.1073/pnas.0811136106Wang, G.-Z., & Lercher, M. J. (2011). The Effects of Network Neighbours on Protein Evolution. PLoS ONE, 6(4), e18288. doi:10.1371/journal.pone.0018288Liang, Z., Xu, M., Teng, M., Niu, L., & Wu, J. (2010). Coevolution is a short-distance force at the protein interaction level and correlates with the modular organization of protein networks. FEBS Letters, 584(19), 4237-4240. doi:10.1016/j.febslet.2010.09.014Lovell, S. C., & Robertson, D. L. (2010). An Integrated View of Molecular Coevolution in Protein-Protein Interactions. Molecular Biology and Evolution, 27(11), 2567-2575. doi:10.1093/molbev/msq144Poon, A., & Chao, L. (2005). The Rate of Compensatory Mutation in the DNA Bacteriophage φX174. Genetics, 170(3), 989-999. doi:10.1534/genetics.104.039438Mateo, R., & Mateu, M. G. (2006). Deterministic, Compensatory Mutational Events in the Capsid of Foot-and-Mouth Disease Virus in Response to the Introduction of Mutations Found in Viruses from Persistent Infections. Journal of Virology, 81(4), 1879-1887. doi:10.1128/jvi.01899-06Davis, B. H., Poon, A. F. Y., & Whitlock, M. C. (2009). Compensatory mutations are repeatable and clustered within proteins. Proceedings of the Royal Society B: Biological Sciences, 276(1663), 1823-1827. doi:10.1098/rspb.2008.1846Sen, L., Fares, M. A., Liang, B., Gao, L., Wang, B., Wang, T., & Su, Y.-J. (2011). Molecular evolution of rbcL in three gymnosperm families: identifying adaptive and coevolutionary patterns. Biology Direct, 6(1), 29. doi:10.1186/1745-6150-6-29Lehtonen, S. (2011). Towards Resolving the Complete Fern Tree of Life. PLoS ONE, 6(10), e24851. doi:10.1371/journal.pone.0024851Drummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7(1), 214. doi:10.1186/1471-2148-7-214Fazekas, A. J., Kuzmina, M. L., Newmaster, S. G., & Hollingsworth, P. M. (2012). DNA Barcoding Methods for Land Plants. Methods in Molecular Biology™, 223-252. doi:10.1007/978-1-61779-591-6_11Chase, M. W., Salamin, N., Wilkinson, M., Dunwell, J. M., Kesanakurthi, R. P., Haidar, N., & Savolainen, V. (2005). Land plants and DNA barcodes: short-term and long-term goals. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1462), 1889-1895. doi:10.1098/rstb.2005.1720Yang, Z. (2007). PAML 4: Phylogenetic Analysis by Maximum Likelihood. Molecular Biology and Evolution, 24(8), 1586-1591. doi:10.1093/molbev/msm088Stern, A., Doron-Faigenboim, A., Erez, E., Martz, E., Bacharach, E., & Pupko, T. (2007). Selecton 2007: advanced models for detecting positive and purifying selection using a Bayesian inference approach. Nucleic Acids Research, 35(Web Server), W506-W511. doi:10.1093/nar/gkm382Delport, W., Poon, A. F. Y., Frost, S. D. W., & Kosakovsky Pond, S. L. (2010). Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics, 26(19), 2455-2457. doi:10.1093/bioinformatics/btq429Pond, S. L. K., & Frost, S. D. W. (2005). Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics, 21(10), 2531-2533. doi:10.1093/bioinformatics/bti320Fares, M. A., & McNally, D. (2006). CAPS: coevolution analysis using protein sequences. Bioinformatics, 22(22), 2821-2822. doi:10.1093/bioinformatics/btl493Gouveia-Oliveira, R., Roque, F. S., Wernersson, R., Sicheritz-Ponten, T., Sackett, P. W., Molgaard, A., & Pedersen, A. G. (2009). InterMap3D: predicting and visualizing co-evolving protein residues. Bioinformatics, 25(15), 1963-1965. doi:10.1093/bioinformatics/btp335Fazekas, A. J., Burgess, K. S., Kesanakurti, P. R., Graham, S. W., Newmaster, S. G., Husband, B. C., … Barrett, S. C. H. (2008). Multiple Multilocus DNA Barcodes from the Plastid Genome Discriminate Plant Species Equally Well. PLoS ONE, 3(7), e2802. doi:10.1371/journal.pone.0002802Kress, W. J., & Erickson, D. L. (2007). A Two-Locus Global DNA Barcode for Land Plants: The Coding rbcL Gene Complements the Non-Coding trnH-psbA Spacer Region. PLoS ONE, 2(6), e508. doi:10.1371/journal.pone.0000508Karol, K. G., Arumuganathan, K., Boore, J. L., Duffy, A. M., Everett, K. D., Hall, J. D., … Wolf, P. G. (2010). Complete plastome sequences of Equisetum arvense and Isoetes flaccida: implications for phylogeny and plastid genome evolution of early land plant lineages. BMC Evolutionary Biology, 10(1), 321. doi:10.1186/1471-2148-10-321Brown, C. J., Todd, K. M., & Rosenzweig, R. F. (1998). Multiple duplications of yeast hexose transport genes in response to selection in a glucose-limited environment. Molecular Biology and Evolution, 15(8), 931-942. doi:10.1093/oxfordjournals.molbev.a026009Bekaert, M., & Conant, G. C. (2010). Copy Number Alterations among Mammalian Enzymes Cluster in the Metabolic Network. Molecular Biology and Evolution, 28(2), 1111-1121. doi:10.1093/molbev/msq296Müh, F., Renger, T., & Zouni, A. (2008). Crystal structure of cyanobacterial photosystem II at 3.0 Å resolution: A closer look at the antenna system and the small membrane-intrinsic subunits. Plant Physiology and Biochemistry, 46(3), 238-264. doi:10.1016/j.plaphy.2008.01.003Guskov, A., Gabdulkhakov, A., Broser, M., Glöckner, C., Hellmich, J., Kern, J., … Zouni, A. (2010). Recent Progress in the Crystallographic Studies of Photosystem II. ChemPhysChem, 11(6), 1160-1171. doi:10.1002/cphc.200900901Lee, B.-C., Park, K., & Kim, D. (2008). Analysis of the residue-residue coevolution network and the functionally important residues in proteins. Proteins: Structure, Function, and Bioinformatics, 72(3), 863-872. doi:10.1002/prot.21972Wyman, S. K., Jansen, R. K., & Boore, J. L. (2004). Automatic annotation of organellar genomes with DOGMA. Bioinformatics, 20(17), 3252-3255. doi:10.1093/bioinformatics/bth352Posada, D. (2008). jModelTest: Phylogenetic Model Averaging. Molecular Biology and Evolution, 25(7), 1253-1256. doi:10.1093/molbev/msn083Phipps, C. J., Taylor, T. N., Taylor, E. L., Cúneo, N. R., Boucher, L. D., & Yao, X. (1998). OSMUNDA (OSMUNDACEAE) FROM THE TRIASSIC OF Antarctica: an example of evolutionary stasis. American Journal of Botany, 85(6), 888-895. doi:10.2307/2446424Anisimova, M., Bielawski, J. P., & Yang, Z. (2001). Accuracy and Power of the Likelihood Ratio Test in Detecting Adaptive Molecular Evolution. Molecular Biology and Evolution, 18(8), 1585-1592. doi:10.1093/oxfordjournals.molbev.a003945Suzuki, Y., & Gojobori, T. (1999). A method for detecting positive selection at single amino acid sites. Molecular Biology and Evolution, 16(10), 1315-1328. doi:10.1093/oxfordjournals.molbev.a026042Kosakovsky Pond, S. L., & Frost, S. D. W. (2005). Not So Different After All: A Comparison of Methods for Detecting Amino Acid Sites Under Selection. Molecular Biology and Evolution, 22(5), 1208-1222. doi:10.1093/molbev/msi105Caporaso, J. G., Smit, S., Easton, B. C., Hunter, L., Huttley, G. A., & Knight, R. (2008). Detecting coevolution without phylogenetic trees? Tree-ignorant metrics of coevolution perform as well as tree-aware metrics. BMC Evolutionary Biology, 8(1), 327. doi:10.1186/1471-2148-8-327Li, W.-H. (1993). Unbiased estimation of the rates of synonymous and nonsynonymous substitution. Journal of Molecular Evolution, 36(1), 96-99. doi:10.1007/bf02407308Poon, A. F. Y., Lewis, F. I., Frost, S. D. W., & Kosakovsky Pond, S. L. (2008). Spidermonkey: rapid detection of co-evolving sites using Bayesian graphical models. Bioinformatics, 24(17), 1949-1950. doi:10.1093/bioinformatics/btn313Tillier, E. R. M., & Lui, T. W. H. (2003). Using multiple interdependency to separate functional from phylogenetic correlations in protein alignments. Bioinformatics, 19(6), 750-755. doi:10.1093/bioinformatics/btg072Gouveia-Oliveira, R., & Pedersen, A. G. (2007). Finding coevolving amino acid residues using row and column weighting of mutual information and multi-dimensional amino acid representation. Algorithms for Molecular Biology, 2(1). doi:10.1186/1748-7188-2-12Martin, L. C., Gloor, G. B., Dunn, S. D., & Wahl, L. M. (2005). Using information theory to search for co-evolving residues in proteins. Bioinformatics, 21(22), 4116-4124. doi:10.1093/bioinformatics/bti671Makarova, K. S., Wolf, Y. I., van der Oost, J., & Koonin, E. V. (2009). Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biology Direct, 4(1), 29. doi:10.1186/1745-6150-4-2

    Arabidopsis Heat Stress-Induced Proteins Are Enriched in Electrostatically Charged Amino Acids and Intrinsically Disordered Regions

    Full text link
    [EN] Comparison of the proteins of thermophilic, mesophilic, and psychrophilic prokaryotes has revealed several features characteristic to proteins adapted to high temperatures, which increase their thermostability. These characteristics include a profusion of disulfide bonds, salt bridges, hydrogen bonds, and hydrophobic interactions, and a depletion in intrinsically disordered regions. It is unclear, however, whether such differences can also be observed in eukaryotic proteins or when comparing proteins that are adapted to temperatures that are more subtly different. When an organism is exposed to high temperatures, a subset of its proteins is overexpressed (heat-induced proteins), whereas others are either repressed (heat-repressed proteins) or remain unaffected. Here, we determine the expression levels of all genes in the eukaryotic model system Arabidopsis thaliana at 22 and 37 degrees C, and compare both the amino acid compositions and levels of intrinsic disorder of heat-induced and heat-repressed proteins. We show that, compared to heat-repressed proteins, heat-induced proteins are enriched in electrostatically charged amino acids and depleted in polar amino acids, mirroring thermophile proteins. However, in contrast with thermophile proteins, heat-induced proteins are enriched in intrinsically disordered regions, and depleted in hydrophobic amino acids. Our results indicate that temperature adaptation at the level of amino acid composition and intrinsic disorder can be observed not only in proteins of thermophilic organisms, but also in eukaryotic heat-induced proteins; the underlying adaptation pathways, however, are similar but not the same.D.A.-P. and F.F. were supported by funds from the University of Nevada, Reno, and by pilot grants from Nevada INBRE (P20GM103440) and the Smooth Muscle Plasticity COBRE from the University of Nevada, Reno (5P30GM110767-04), both funded by the National Institute of General Medical Sciences (National Institutes of Health). M.X.R.-G. and M.A.F. were supported by grants from Science Foundation Ireland (12/IP/1637) and the Spanish Ministerio de Economia y Competitividad, Spain (MINECO-FEDER; BFU201236346 and BFU2015-66073-P) to MAF. MXRG was supported by a JAE DOC fellowship from the MINECO, Spain. F.V.-S. and M.A.P.-A. were supported by grant BIO2014-55946-P from MINECO-FEDER.Alvarez-Ponce, D.; Ruiz-González, M.; Vera Sirera, FJ.; Feyertag, F.; Perez Amador, MA.; Fares Riaño, MA. (2018). Arabidopsis Heat Stress-Induced Proteins Are Enriched in Electrostatically Charged Amino Acids and Intrinsically Disordered Regions. International Journal of Molecular Sciences. 19(8). https://doi.org/10.3390/ijms19082276S198Karshikoff, A., & Ladenstein, R. (2001). Ion pairs and the thermotolerance of proteins from hyperthermophiles: a ‘traffic rule’ for hot roads. Trends in Biochemical Sciences, 26(9), 550-557. doi:10.1016/s0968-0004(01)01918-1Strop, P., & Mayo, S. L. (2000). Contribution of Surface Salt Bridges to Protein Stability†,‡. Biochemistry, 39(6), 1251-1255. doi:10.1021/bi992257jPERUTZ, M. F., & RAIDT, H. (1975). Stereochemical basis of heat stability in bacterial ferredoxins and in haemoglobin A2. Nature, 255(5505), 256-259. doi:10.1038/255256a0Argos, P., Rossmann, M. G., Grau, U. M., Zuber, H., Frank, G., & Tratschin, J. D. (1979). Thermal stability and protein structure. Biochemistry, 18(25), 5698-5703. doi:10.1021/bi00592a028Beeby, M., O’Connor, B. D., Ryttersgaard, C., Boutz, D. R., Perry, L. J., & Yeates, T. O. (2005). The Genomics of Disulfide Bonding and Protein Stabilization in Thermophiles. PLoS Biology, 3(9), e309. doi:10.1371/journal.pbio.0030309Haney, P. J., Badger, J. H., Buldak, G. L., Reich, C. I., Woese, C. R., & Olsen, G. J. (1999). Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species. Proceedings of the National Academy of Sciences, 96(7), 3578-3583. doi:10.1073/pnas.96.7.3578Kreil, D. P. (2001). Identification of thermophilic species by the amino acid compositions deduced from their genomes. Nucleic Acids Research, 29(7), 1608-1615. doi:10.1093/nar/29.7.1608Tekaia, F., Yeramian, E., & Dujon, B. (2002). Amino acid composition of genomes, lifestyles of organisms, and evolutionary trends: a global picture with correspondence analysis. Gene, 297(1-2), 51-60. doi:10.1016/s0378-1119(02)00871-5Zeldovich, K. B., Berezovsky, I. N., & Shakhnovich, E. I. (2007). Protein and DNA Sequence Determinants of Thermophilic Adaptation. PLoS Computational Biology, 3(1), e5. doi:10.1371/journal.pcbi.0030005Chakravarty, S., & Varadarajan, R. (2000). Elucidation of determinants of protein stability through genome sequence analysis. FEBS Letters, 470(1), 65-69. doi:10.1016/s0014-5793(00)01267-9Cambillau, C., & Claverie, J.-M. (2000). Structural and Genomic Correlates of Hyperthermostability. Journal of Biological Chemistry, 275(42), 32383-32386. doi:10.1074/jbc.c000497200Burra, P. V., Kalmar, L., & Tompa, P. (2010). Reduction in Structural Disorder and Functional Complexity in the Thermal Adaptation of Prokaryotes. PLoS ONE, 5(8), e12069. doi:10.1371/journal.pone.0012069Wang, J., Yang, Y., Cao, Z., Li, Z., Zhao, H., & Zhou, Y. (2013). The Role of Semidisorder in Temperature Adaptation of Bacterial FlgM Proteins. Biophysical Journal, 105(11), 2598-2605. doi:10.1016/j.bpj.2013.10.026Vicedo, E., Schlessinger, A., & Rost, B. (2015). Environmental Pressure May Change the Composition Protein Disorder in Prokaryotes. PLOS ONE, 10(8), e0133990. doi:10.1371/journal.pone.0133990Galea, C. A., High, A. A., Obenauer, J. C., Mishra, A., Park, C.-G., Punta, M., … Kriwacki, R. W. (2009). Large-Scale Analysis of Thermostable, Mammalian Proteins Provides Insights into the Intrinsically Disordered Proteome. Journal of Proteome Research, 8(1), 211-226. doi:10.1021/pr800308vTsvetkov, P., Myers, N., Moscovitz, O., Sharon, M., Prilusky, J., & Shaul, Y. (2012). Thermo-resistant intrinsically disordered proteins are efficient 20S proteasome substrates. Mol. BioSyst., 8(1), 368-373. doi:10.1039/c1mb05283gGalea, C. A., Nourse, A., Wang, Y., Sivakolundu, S. G., Heller, W. T., & Kriwacki, R. W. (2008). Role of Intrinsic Flexibility in Signal Transduction Mediated by the Cell Cycle Regulator, p27Kip1. Journal of Molecular Biology, 376(3), 827-838. doi:10.1016/j.jmb.2007.12.016Van Noort, V., Bradatsch, B., Arumugam, M., Amlacher, S., Bange, G., Creevey, C., … Bork, P. (2013). Consistent mutational paths predict eukaryotic thermostability. BMC Evolutionary Biology, 13(1), 7. doi:10.1186/1471-2148-13-7Wang, G.-Z., & Lercher, M. J. (2010). Amino acid composition in endothermic vertebrates is biased in the same direction as in thermophilic prokaryotes. BMC Evolutionary Biology, 10(1), 263. doi:10.1186/1471-2148-10-263Windisch, H. S., Lucassen, M., & Frickenhaus, S. (2012). Evolutionary force in confamiliar marine vertebrates of different temperature realms: adaptive trends in zoarcid fish transcriptomes. BMC Genomics, 13(1), 549. doi:10.1186/1471-2164-13-549Albanèse, V., Yam, A. Y.-W., Baughman, J., Parnot, C., & Frydman, J. (2006). Systems Analyses Reveal Two Chaperone Networks with Distinct Functions in Eukaryotic Cells. Cell, 124(1), 75-88. doi:10.1016/j.cell.2005.11.039Berry, J., & Bjorkman, O. (1980). Photosynthetic Response and Adaptation to Temperature in Higher Plants. Annual Review of Plant Physiology, 31(1), 491-543. doi:10.1146/annurev.pp.31.060180.002423Sueoka, N. (1961). CORRELATION BETWEEN BASE COMPOSITION OF DEOXYRIBONUCLEIC ACID AND AMINO ACID COMPOSITION OF PROTEIN. Proceedings of the National Academy of Sciences, 47(8), 1141-1149. doi:10.1073/pnas.47.8.1141Cherry, J. L. (2009). Highly Expressed and Slowly Evolving Proteins Share Compositional Properties with Thermophilic Proteins. Molecular Biology and Evolution, 27(3), 735-741. doi:10.1093/molbev/msp270The amino acid composition is different between the cytoplasmic and extracellular sides in membrane proteins. (1992). FEBS Letters, 303(2-3), 141-146. doi:10.1016/0014-5793(92)80506-cNakashima, H., & Nishikawa, K. (1994). Discrimination of Intracellular and Extracellular Proteins Using Amino Acid Composition and Residue-pair Frequencies. Journal of Molecular Biology, 238(1), 54-61. doi:10.1006/jmbi.1994.1267Dosztanyi, Z., Csizmok, V., Tompa, P., & Simon, I. (2005). IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics, 21(16), 3433-3434. doi:10.1093/bioinformatics/bti541Peng, Z., Uversky, V. N., & Kurgan, L. (2016). Genes encoding intrinsic disorder in Eukaryota have high GC content. Intrinsically Disordered Proteins, 4(1), e1262225. doi:10.1080/21690707.2016.1262225Yruela, I., & Contreras-Moreira, B. (2013). Genetic recombination is associated with intrinsic disorder in plant proteomes. BMC Genomics, 14(1), 772. doi:10.1186/1471-2164-14-772Paliy, O., Gargac, S. M., Cheng, Y., Uversky, V. N., & Dunker, A. K. (2008). Protein Disorder Is Positively Correlated with Gene Expression inEscherichia coli. Journal of Proteome Research, 7(6), 2234-2245. doi:10.1021/pr800055rSingh, G. P., & Dash, D. (2008). How expression level influences the disorderness of proteins. Biochemical and Biophysical Research Communications, 371(3), 401-404. doi:10.1016/j.bbrc.2008.04.072Yang, J.-R., Liao, B.-Y., Zhuang, S.-M., & Zhang, J. (2012). Protein misinteraction avoidance causes highly expressed proteins to evolve slowly. Proceedings of the National Academy of Sciences, 109(14), E831-E840. doi:10.1073/pnas.1117408109Hendsch, Z. S., & Tidor, B. (1994). Do salt bridges stabilize proteins? A continuum electrostatic analysis. Protein Science, 3(2), 211-226. doi:10.1002/pro.5560030206Zhou, X.-X., Wang, Y.-B., Pan, Y.-J., & Li, W.-F. (2007). Differences in amino acids composition and coupling patterns between mesophilic and thermophilic proteins. Amino Acids, 34(1), 25-33. doi:10.1007/s00726-007-0589-xCatanzano, F., Barone, G., Graziano, G., & Capasso, S. (1997). Thermodynamic analysis of the effect of selective monodeamidation at asparagine 67 in ribonuclease A. Protein Science, 6(8), 1682-1693. doi:10.1002/pro.5560060808Charlesworth, B. (2009). Effective population size and patterns of molecular evolution and variation. Nature Reviews Genetics, 10(3), 195-205. doi:10.1038/nrg2526Bolser, D., Staines, D. M., Pritchard, E., & Kersey, P. (2016). Ensembl Plants: Integrating Tools for Visualizing, Mining, and Analyzing Plant Genomics Data. Methods in Molecular Biology, 115-140. doi:10.1007/978-1-4939-3167-5_6Kasprzyk, A. (2003). EnsMart: A Generic System for Fast and Flexible Access to Biological Data. Genome Research, 14(1), 160-169. doi:10.1101/gr.1645104Hooper, C. M., Castleden, I. R., Tanz, S. K., Aryamanesh, N., & Millar, A. H. (2016). SUBA4: the interactive data analysis centre for Arabidopsis subcellular protein locations. Nucleic Acids Research, 45(D1), D1064-D1074. doi:10.1093/nar/gkw1041R: A language and environment for statistical computing. R Foundation for Statistical Computinghttp://www.R-project.org/Kim, S. (2015). ppcor: An R Package for a Fast Calculation to Semi-partial Correlation Coefficients. Communications for Statistical Applications and Methods, 22(6), 665-674. doi:10.5351/csam.2015.22.6.66

    Proteome-Wide Analysis of Functional Divergence in Bacteria: Exploring a Host of Ecological Adaptations

    Get PDF
    Functional divergence is the process by which new genes and functions originate through the modification of existing ones. Both genetic and environmental factors influence the evolution of new functions, including gene duplication or changes in the ecological requirements of an organism. Novel functions emerge at the expense of ancestral ones and are generally accompanied by changes in the selective forces at constrained protein regions. We present software capable of analyzing whole proteomes, identifying putative amino acid replacements leading to functional change in each protein and performing statistical tests on all tabulated data. We apply this method to 750 complete bacterial proteomes to identify high-level patterns of functional divergence and link these patterns to ecological adaptations. Proteome-wide analyses of functional divergence in bacteria with different ecologies reveal a separation between proteins involved in information processing (Ribosome biogenesis etc.) and those which are dependent on the environment (energy metabolism, defense etc.). We show that the evolution of pathogenic and symbiotic bacteria is constrained by their association with the host, and also identify unusual events of functional divergence even in well-studied bacteria such as Escherichia coli. We present a description of the roles of phylogeny and ecology in functional divergence at the level of entire proteomes in bacteria.This study was supported by a grant from the Spanish Ministerio de Ciencia e Inovacion (BFU2009-12022) and a grant of the Research Frontiers Program (10/RFP/GEN2685) from Science Foundation Ireland. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Caffrey, BE.; Williams, TA.; Jiang, X.; Toft, C.; Hokamp, K.; Fares Riaño, MA. (2012). Proteome-Wide Analysis of Functional Divergence in Bacteria: Exploring a Host of Ecological Adaptations. PLoS ONE. 7:35659-35659. https://doi.org/10.1371/journal.pone.003565935659356597Conant, G. C., & Wolfe, K. H. (2008). Turning a hobby into a job: How duplicated genes find new functions. Nature Reviews Genetics, 9(12), 938-950. doi:10.1038/nrg2482Lynch, M. (2000). The Evolutionary Fate and Consequences of Duplicate Genes. Science, 290(5494), 1151-1155. doi:10.1126/science.290.5494.1151Pinto, G., Mahler, D. L., Harmon, L. J., & Losos, J. B. (2008). Testing the island effect in adaptive radiation: rates and patterns of morphological diversification in Caribbean and mainland Anolis lizards. Proceedings of the Royal Society B: Biological Sciences, 275(1652), 2749-2757. doi:10.1098/rspb.2008.0686Lynch, M., & Katju, V. (2004). The altered evolutionary trajectories of gene duplicates. Trends in Genetics, 20(11), 544-549. doi:10.1016/j.tig.2004.09.001Innan, H., & Kondrashov, F. (2010). The evolution of gene duplications: classifying and distinguishing between models. Nature Reviews Genetics, 11(2), 97-108. doi:10.1038/nrg2689Moran, N. A. (2002). Microbial Minimalism. Cell, 108(5), 583-586. doi:10.1016/s0092-8674(02)00665-7Toft, C., Williams, T. A., & Fares, M. A. (2009). Genome-Wide Functional Divergence after the Symbiosis of Proteobacteria with Insects Unraveled through a Novel Computational Approach. PLoS Computational Biology, 5(4), e1000344. doi:10.1371/journal.pcbi.1000344Dykhuizen, D. E. (1998). Antonie van Leeuwenhoek, 73(1), 25-33. doi:10.1023/a:1000665216662Gans, J. (2005). Computational Improvements Reveal Great Bacterial Diversity and High Metal Toxicity in Soil. Science, 309(5739), 1387-1390. doi:10.1126/science.1112665Pikuta, E. V., Hoover, R. B., & Tang, J. (2007). Microbial Extremophiles at the Limits of Life. Critical Reviews in Microbiology, 33(3), 183-209. doi:10.1080/10408410701451948Pace, N. R. (1997). A Molecular View of Microbial Diversity and the Biosphere. Science, 276(5313), 734-740. doi:10.1126/science.276.5313.734Dyall, S. D. (2004). Ancient Invasions: From Endosymbionts to Organelles. Science, 304(5668), 253-257. doi:10.1126/science.1094884Zhang, J. (2003). Evolution by gene duplication: an update. Trends in Ecology & Evolution, 18(6), 292-298. doi:10.1016/s0169-5347(03)00033-8Lynch, M., & Conery, J. S. (2003). The Origins of Genome Complexity. Science, 302(5649), 1401-1404. doi:10.1126/science.1089370Ochman, H., Lawrence, J. G., & Groisman, E. A. (2000). Lateral gene transfer and the nature of bacterial innovation. Nature, 405(6784), 299-304. doi:10.1038/35012500McKenzie, G. J., Harris, R. S., Lee, P. L., & Rosenberg, S. M. (2000). The SOS response regulates adaptive mutation. Proceedings of the National Academy of Sciences, 97(12), 6646-6651. doi:10.1073/pnas.120161797Dagan, T., & Martin, W. (2006). Genome Biology, 7(10), 118. doi:10.1186/gb-2006-7-10-118Kimura, M. (1983). The Neutral Theory of Molecular Evolution. doi:10.1017/cbo9780511623486Yang, Z., & Bielawski, J. P. (2000). Statistical methods for detecting molecular adaptation. Trends in Ecology & Evolution, 15(12), 496-503. doi:10.1016/s0169-5347(00)01994-7Suzuki, Y., & Gojobori, T. (1999). A method for detecting positive selection at single amino acid sites. Molecular Biology and Evolution, 16(10), 1315-1328. doi:10.1093/oxfordjournals.molbev.a026042Yang, Z., & Nielsen, R. (2002). Codon-Substitution Models for Detecting Molecular Adaptation at Individual Sites Along Specific Lineages. Molecular Biology and Evolution, 19(6), 908-917. doi:10.1093/oxfordjournals.molbev.a004148Fares, M. A., Elena, S. F., Ortiz, J., Moya, A., & Barrio, E. (2002). A Sliding Window-Based Method to Detect Selective Constraints in Protein-Coding Genes and Its Application to RNA Viruses. Journal of Molecular Evolution, 55(5), 509-521. doi:10.1007/s00239-002-2346-9Suzuki, Y. (2004). New Methods for Detecting Positive Selection at Single Amino Acid Sites. Journal of Molecular Evolution, 59(1). doi:10.1007/s00239-004-2599-6Zhang, J. (2004). Frequent False Detection of Positive Selection by the Likelihood Method with Branch-Site Models. Molecular Biology and Evolution, 21(7), 1332-1339. doi:10.1093/molbev/msh117Suzuki, Y. (2004). Three-Dimensional Window Analysis for Detecting Positive Selection at Structural Regions of Proteins. Molecular Biology and Evolution, 21(12), 2352-2359. doi:10.1093/molbev/msh249Zhang, J. (2005). Evaluation of an Improved Branch-Site Likelihood Method for Detecting Positive Selection at the Molecular Level. Molecular Biology and Evolution, 22(12), 2472-2479. doi:10.1093/molbev/msi237Berglund, A.-C., Wallner, B., Elofsson, A., & Liberles, D. A. (2005). Tertiary Windowing to Detect Positive Diversifying Selection. Journal of Molecular Evolution, 60(4), 499-504. doi:10.1007/s00239-004-0223-4Gu, X. (1999). Statistical methods for testing functional divergence after gene duplication. Molecular Biology and Evolution, 16(12), 1664-1674. doi:10.1093/oxfordjournals.molbev.a026080Gu, X. (2001). Mathematical Modeling for Functional Divergence after Gene Duplication. Journal of Computational Biology, 8(3), 221-234. doi:10.1089/10665270152530827Gu, X. (2006). A Simple Statistical Method for Estimating Type-II (Cluster-Specific) Functional Divergence of Protein Sequences. Molecular Biology and Evolution, 23(10), 1937-1945. doi:10.1093/molbev/msl056Williams, T. A., Codoñer, F. M., Toft, C., & Fares, M. A. (2010). Two chaperonin systems in bacterial genomes with distinct ecological roles. Trends in Genetics, 26(2), 47-51. doi:10.1016/j.tig.2009.11.009Tatusov, R. L., Fedorova, N. D., Jackson, J. D., Jacobs, A. R., Kiryutin, B., Koonin, E. V., … Natale, D. A. (2003). BMC Bioinformatics, 4(1), 41. doi:10.1186/1471-2105-4-41Lake, J. A. (1999). GENOMICS:Mix and Match in the Tree of Life. Science, 283(5410), 2027-2028. doi:10.1126/science.283.5410.2027Mushegian, A. R., & Koonin, E. V. (1996). A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proceedings of the National Academy of Sciences, 93(19), 10268-10273. doi:10.1073/pnas.93.19.10268Azuma, Y., & Ota, M. (2009). An evaluation of minimal cellular functions to sustain a bacterial cell. BMC Systems Biology, 3(1). doi:10.1186/1752-0509-3-111Crick, F. H. C. (1968). The origin of the genetic code. Journal of Molecular Biology, 38(3), 367-379. doi:10.1016/0022-2836(68)90392-6Lund, P. A. (2009). Multiple chaperonins in bacteria – why so many? FEMS Microbiology Reviews, 33(4), 785-800. doi:10.1111/j.1574-6976.2009.00178.xKampinga, H. H., Dynlacht, J. R., & Dikomey, E. (2004). Mechanism of radiosensitization by hyperthermia (43°C) as derived from studies with DNA repair defective mutant cell lines. International Journal of Hyperthermia, 20(2), 131-139. doi:10.1080/02656730310001627713Laszlo, A. (1992). The effects of hyperthermia on mammalian cell structure and function. Cell Proliferation, 25(2), 59-87. doi:10.1111/j.1365-2184.1992.tb01482.xKregel, K. C. (2002). Invited Review: Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. Journal of Applied Physiology, 92(5), 2177-2186. doi:10.1152/japplphysiol.01267.2001Lepock, J. R. (1997). Protein Denaturation During Heat Shock. Advances in Molecular and Cell Biology, 223-259. doi:10.1016/s1569-2558(08)60079-xDegnan, P. H. (2005). Genome sequence of Blochmannia pennsylvanicus indicates parallel evolutionary trends among bacterial mutualists of insects. Genome Research, 15(8), 1023-1033. doi:10.1101/gr.3771305Gil, R., Sabater-Munoz, B., Latorre, A., Silva, F. J., & Moya, A. (2002). Extreme genome reduction in Buchnera spp.: Toward the minimal genome needed for symbiotic life. Proceedings of the National Academy of Sciences, 99(7), 4454-4458. doi:10.1073/pnas.062067299Perez-Brocal, V., Gil, R., Ramos, S., Lamelas, A., Postigo, M., Michelena, J. M., … Latorre, A. (2006). A Small Microbial Genome: The End of a Long Symbiotic Relationship? Science, 314(5797), 312-313. doi:10.1126/science.1130441Shigenobu, S., Watanabe, H., Hattori, M., Sakaki, Y., & Ishikawa, H. (2000). Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature, 407(6800), 81-86. doi:10.1038/35024074Tamas, I. (2002). 50 Million Years of Genomic Stasis in Endosymbiotic Bacteria. Science, 296(5577), 2376-2379. doi:10.1126/science.1071278Van Ham, R. C. H. J., Kamerbeek, J., Palacios, C., Rausell, C., Abascal, F., Bastolla, U., … Moya, A. (2003). Reductive genome evolution in Buchnera aphidicola. Proceedings of the National Academy of Sciences, 100(2), 581-586. doi:10.1073/pnas.0235981100Nakabachi, A., Yamashita, A., Toh, H., Ishikawa, H., Dunbar, H. E., Moran, N. A., & Hattori, M. (2006). The 160-Kilobase Genome of the Bacterial Endosymbiont Carsonella. Science, 314(5797), 267-267. doi:10.1126/science.1134196Baron, C. (2010). Antivirulence drugs to target bacterial secretion systems. Current Opinion in Microbiology, 13(1), 100-105. doi:10.1016/j.mib.2009.12.003Douglas, A. E. (1998). Nutritional Interactions in Insect-Microbial Symbioses: Aphids and Their Symbiotic BacteriaBuchnera. Annual Review of Entomology, 43(1), 17-37. doi:10.1146/annurev.ento.43.1.17Sandström, J., Telang, A., & Moran, N. . (2000). Nutritional enhancement of host plants by aphids — a comparison of three aphid species on grasses. Journal of Insect Physiology, 46(1), 33-40. doi:10.1016/s0022-1910(99)00098-0Anderson, B. E., & Neuman, M. A. (1997). Bartonella spp. as emerging human pathogens. Clinical Microbiology Reviews, 10(2), 203-219. doi:10.1128/cmr.10.2.203Dramsi, S., & Cossart, P. (1998). INTRACELLULAR PATHOGENS AND THE ACTIN CYTOSKELETON. Annual Review of Cell and Developmental Biology, 14(1), 137-166. doi:10.1146/annurev.cellbio.14.1.137Dehio, C. (2001). Bartonella interactions with endothelial cells and erythrocytes. Trends in Microbiology, 9(6), 279-285. doi:10.1016/s0966-842x(01)02047-9Ihler, G. M. (1996). Bartonella bacilliformis: dangerous pathogen slowly emerging from deep background. FEMS Microbiology Letters, 144(1), 1-11. doi:10.1111/j.1574-6968.1996.tb08501.xFricke, W. F., Wright, M. S., Lindell, A. H., Harkins, D. M., Baker-Austin, C., Ravel, J., & Stepanauskas, R. (2008). Insights into the Environmental Resistance Gene Pool from the Genome Sequence of the Multidrug-Resistant Environmental Isolate Escherichia coli SMS-3-5. Journal of Bacteriology, 190(20), 6779-6794. doi:10.1128/jb.00661-08Ren, C.-P., Beatson, S. A., Parkhill, J., & Pallen, M. J. (2005). The Flag-2 Locus, an Ancestral Gene Cluster, Is Potentially Associated with a Novel Flagellar System from Escherichia coli. Journal of Bacteriology, 187(4), 1430-1440. doi:10.1128/jb.187.4.1430-1440.2005Manges, A. R., Johnson, J. R., Foxman, B., O’Bryan, T. T., Fullerton, K. E., & Riley, L. W. (2001). Widespread Distribution of Urinary Tract Infections Caused by a Multidrug-ResistantEscherichia coliClonal Group. New England Journal of Medicine, 345(14), 1007-1013. doi:10.1056/nejmoa011265Cascales, E., & Christie, P. J. (2003). The versatile bacterial type IV secretion systems. Nature Reviews Microbiology, 1(2), 137-149. doi:10.1038/nrmicro753Bailey, S., Ward, D., Middleton, R., Grossmann, J. G., & Zambryski, P. C. (2006). Agrobacterium tumefaciens VirB8 structure reveals potential protein-protein interaction sites. Proceedings of the National Academy of Sciences, 103(8), 2582-2587. doi:10.1073/pnas.0511216103Altenhoff, A. M., & Dessimoz, C. (2009). Phylogenetic and Functional Assessment of Orthologs Inference Projects and Methods. PLoS Computational Biology, 5(1), e1000262. doi:10.1371/journal.pcbi.1000262Roth, A. C., Gonnet, G. H., & Dessimoz, C. (2008). Algorithm of OMA for large-scale orthology inference. BMC Bioinformatics, 9(1). doi:10.1186/1471-2105-9-518Schneider, A., Dessimoz, C., & Gonnet, G. H. (2007). OMA Browser Exploring orthologous relations across 352 complete genomes. Bioinformatics, 23(16), 2180-2182. doi:10.1093/bioinformatics/btm295Tatusov, R. L. (2001). The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Research, 29(1), 22-28. doi:10.1093/nar/29.1.22Lima, T., Auchincloss, A. H., Coudert, E., Keller, G., Michoud, K., Rivoire, C., … Bairoch, A. (2009). HAMAP: a database of completely sequenced microbial proteome sets and manually curated microbial protein families in UniProtKB/Swiss-Prot. Nucleic Acids Research, 37(Database), D471-D478. doi:10.1093/nar/gkn661Gascuel, O. (1997). BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Molecular Biology and Evolution, 14(7), 685-695. doi:10.1093/oxfordjournals.molbev.a025808Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289-300. doi:10.1111/j.2517-6161.1995.tb02031.xDutheil, J., Gaillard, S., Bazin, E., Glémin, S., Ranwez, V., Galtier, N., & Belkhir, K. (2006). BMC Bioinformatics, 7(1), 188. doi:10.1186/1471-2105-7-188Gu, X., & Vander Velden, K. (2002). DIVERGE: phylogeny-based analysis for functional-structural divergence of a protein family. Bioinformatics, 18(3), 500-501. doi:10.1093/bioinformatics/18.3.500Stamatakis, A., Ludwig, T., & Meier, H. (2004). RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics, 21(4), 456-463. doi:10.1093/bioinformatics/bti191Yang, Z. (2007). PAML 4: Phylogenetic Analysis by Maximum Likelihood. Molecular Biology and Evolution, 24(8), 1586-1591. doi:10.1093/molbev/msm088Baron, C. (2006). VirB8: a conserved type IV secretion system assembly factor and drug targetThis paper is one of a selection of papers published in this Special Issue, entitled CSBMCB — Membrane Proteins in Health and Disease. Biochemistry and Cell Biology, 84(6), 890-899. doi:10.1139/o06-14

    Survival and Innovation: The role of mutational robustness in evolution

    Full text link
    [EN] Biological systems are resistant to perturbations caused by the environment and by the intrinsic noise of the system. Robustness to mutations is a particular aspect of robustness in which the phenotype is resistant to genotypic variation. Mutational robustness has been linked to the ability of the system to generate heritable genetic variation (a property known as evolvability). It is known that greater robustness leads to increased evolvability. Therefore, mechanisms that increase mutational robustness fuel evolvability. Two such mechanisms, molecular chaperones and gene duplication, have been credited with enormous importance in generating functional diversity through the increase of system's robustness to mutational insults. However, the way in which such mechanisms regulate robustness remains largely uncharacterized. In this review, I provide evidence in support of the role of molecular chaperones and gene duplication in innovation. Specifically, I present evidence that these mechanisms regulate robustness allowing unstable systems to survive long periods of time, and thus they provide opportunity for other mutations to compensate the destabilizing effects of functionally innovative mutations. The findings reported in this study set new questions with regards to the synergy between robustness mechanisms and how this synergy can alter the adaptive landscape of proteins. The ideas proposed in this article set the ground for future research in the understanding of the role of robustness in evolution. (C) 2014 Elsevier B.V. and Societe Francaise de Biochimie et Biologie Moleculaire (SFBBM).This study was supported by Science Foundation Ireland (grant reference: 12/IP/1673) and a grant from the Spanish Ministerio de Economia y Competitividad (BFU2009-12022) to MAF.Fares Riaño, MA. (2015). Survival and Innovation: The role of mutational robustness in evolution. Biochimie. 119:254-261. doi:10.1016/j.biochi.2014.10.019S25426111

    Glycerol stress in Saccharomyces cerevisiae: Cellular responses and evolved adaptations

    Full text link
    [EN] Glycerol synthesis is key to central metabolism and stress biology in Saccharomyces cerevisiae, yet the cellular adjustments needed to respond and adapt to glycerol stress are little understood. Here, we determined impacts of acute and chronic exposures to glycerol stress in S. cerevisiae. Glycerol stress can result from an increase of glycerol concentration in the medium due to the S. cerevisiae fermenting activity or other metabolic activities. Acute glycerol-stress led to a 50% decline in growth rate and altered transcription of more than 40% of genes. The increased genetic diversity in S. cerevisiae population, which had evolved in the standard nutrient medium for hundreds of generations, led to an increase in growth rate and altered transcriptome when such population was transferred to stressful media containing a high concentration of glycerol; 0.41 M (0.990 water activity). Evolution of S. cerevisiae populations during a 10-day period in the glycerol-containing medium led to transcriptome changes and readjustments to improve control of glycerol flux across the membrane, regulation of cell cycle, and more robust stress response; and a remarkable increase of growth rate under glycerol stress. Most of the observed regulatory changes arose in duplicated genes. These findings elucidate the physiological mechanisms, which underlie glycerol-stress response, and longer-term adaptations, in S. cerevisiae; they also have implications for enigmatic aspects of the ecology of this otherwise well-characterized yeast.This study was supported by grants from the Spanish Ministry of Economy and Competitiveness (Refs: BFU2012-36346, BFU2015-66073-P) and a grant from the local government Consellería de Educación, Investigación, Cultura y Deporte, Generalitat Valenciana (Ref: ACOMP/2012/098) to M.A.F.Mattenberger, F.; Sabater-Muñoz, B.; Hallsworth, JE.; Fares Riaño, MA. (2017). Glycerol stress in Saccharomyces cerevisiae: Cellular responses and evolved adaptations. Environmental Microbiology. 19(3):990-1007. https://doi.org/10.1111/1642-2920.13603S990100719

    Group 1 LEA proteins, an ancestral plant protein group, are also present in other eukaryotes, and in the archeae and bacteria domains

    Full text link
    [EN] Water is an essential element for living organisms, such that various responses have evolved to withstand water deficit in all living species. The study of these responses in plants has had particular relevance given the negative impact of water scarcity on agriculture. Among the molecules highly associated with plant responses to water limitation are the so-called late embryogenesis abundant (LEA) proteins. These proteins are ubiquitous in the plant kingdom and accumulate during the late phase of embryogenesis and in vegetative tissues in response to water deficit. To know about the evolution of these proteins, we have studied the distribution of group 1 LEA proteins, a set that has also been found beyond the plant kingdom, in Bacillus subtilis and Artemia franciscana. Here, we report the presence of group 1 LEA proteins in green algae (Chlorophyita and Streptophyta), suggesting that these group of proteins emerged before plant land colonization. By sequence analysis of public genomic databases, we also show that 34 prokaryote genomes encode group 1 LEA-like proteins; two of them belong to Archaea domain and 32 to bacterial phyla. Most of these microbes live in soil-associated habitats suggesting horizontal transfer from plants to bacteria; however, our phylogenetic analysis points to convergent evolution. Furthermore, we present data showing that bacterial group 1 LEA proteins are able to prevent enzyme inactivation upon freeze-thaw treatments in vitro, suggesting that they have analogous functions to plant LEA proteins. Overall, data in this work indicate that LEA1 proteins' properties might be relevant to cope with water deficit in different organisms.We thank Jaqueline Mazari for excellent technical assistance. We acknowledge to Paul Gaytan and Santiago Becerra from Oligonucleotide Synthesis and DNA Sequencing Facilities of the Instituto de Biotecnologia-UNAM for providing us with the oligonucleotides and DNA sequences used in this work. This work was partially supported by CONACyT-Mexico to AAC (50485 and 132258). C.C.-V. was supported by a PhD fellowship from CONACyT.Campos, F.; Cuevas-Velazquez, C.; Fares Riaño, MA.; Reyes, J.; Covarrubias, A. (2013). Group 1 LEA proteins, an ancestral plant protein group, are also present in other eukaryotes, and in the archeae and bacteria domains. Molecular Genetics and Genomics. 288(10):503-517. https://doi.org/10.1007/s00438-013-0768-2S50351728810Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105Asteri I-A, Boutou E, Anastasiou R, Pot B, Vorgias CE, Tsakalidou E, Papadimitriou K (2011) In silico evidence for the horizontal transfer of gsiB, a σB-regulated gene in gram-positive bacteria to lactic acid bacteria. Appl Environ Microbiol 77:3526–3531Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148:6–24Bensmihen S, To A, Lambert G, Kroj T, Giraudat J, Parcy F (2004) Analysis of an activated ABI5 allele using a new selection method for transgenic Arabidopsis seeds. FEBS Lett 561:127–131Brandon M, Hall BM, Owns KM, Singh KK (2011) Distinct functions of evolutionary conserved MSF1 and late embryogenesis abundant (LEA)-like domains in mitochondria. J Biol Chem 286:39141–39152Browne J, Tunnacliffe A, Burnell A (2002) Anhydrobiosis: plant desiccation gene found in a nematode. Nature 416:38Campos F, Zamudio F, Covarrubias AA (2006) Two different late embryogenesis abundant proteins from Arabidopsis thaliana contain specific domains that inhibit Escherichia coli growth. Biochem Biophys Res Commun 342:406–413Campos F, Guillen G, Reyes JL, Covarrubias AA (2011) A general method of protein purification for recombinant unstructured non-acidic proteins. Protein Expr Purif 80:47–51Chen WH, Ge X, Wang W, Yu J, Hu S (2009) A gene catalogue for post-diapause development of an anhydrobiotic arthropod Artemia franciscana. BMC Genomics 10:52Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190Del Bem LE, Vincentz MGA (2010) Evolution of xyloglucan-related genes in green plants. BMC Evol Biol 10:341Delseny M, Bies-Etheve N, Carles C, Hull G, Vicient C, Raynal M, Grellet F, Aspart L (2001) Late embryogenesis abundant (LEA) protein gene regulation during Arabidopsis seed maturation. J Plant Physiol 158:419–427Dunning-Hotopp J et al (2007) Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 317:1753–1756Dure L, Galau GA (1981) Developmental biochemistry of cotton seed embryogenesis and germination. XIII. Regulation of biosynthesis of principal storage proteins. Plant Physiol 68:187–194Erkel C, Kube M, Reinhardt R, Liesack W (2006) Genome of rice cluster I Archaea-the key methane producers in the rice rhizosphere. Science 313:370–372Espelund M, Saebøe-Larssen S, Hughes DW, Galau GA, Larsen F, Jakobsen KS (1992) Late embryogenesis-abundant genes encoding proteins with different numbers of hydrophilic repeats are regulated differentially by abscisic acid and osmotic stress. Plant J 2:241–252Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A, Covarrubias AA (2000) Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J Biol Chem 275:5668–5674Gaubier P, Raynal M, Hull G, Huestis GM, Grellet F, Arenas C, Pagès M, Delseny M (1993) Two different Em-like genes are expressed in Arabidopsis thaliana seeds during maturation. Mol Gen Genet 238:409–418Gilles GJ, Hines KM, Manfre AJ, Marcotte WR Jr (2007) A predicted N-terminal helical domain of a group 1 LEA protein is required for protection of enzyme activity from drying. Plant Physiol Biochem 45:389–399Goyal K, Walton LJ, Tunnacliffe A (2005) LEA proteins prevent protein aggregation due to water stress. Biochem J 388:151–157Graham LE, Arancibia-Avila P, Taylor WA, Strother PK, Cook ME (2012) Aeroterrestrial Coleochaete (Streptophyta, Coleochaetales) models early plant adaptation to land. Am J Bot 99:130–144Hand SC, Jones D, Menze MA, Witt TL (2007) Life without water: expression of plant LEA genes by an anhydrobiotic arthropod. J Exp Zool 307:62–66Hand SC, Menze MA, Toner M, Boswell L, Moore D (2010) LEA proteins during water stress: not just for plants anymore. Annu Rev Physiol 73:115–134Hara M, Fujinaga M, Kuboi T (2004) Radical scavenging activity and oxidative modification of citrus dehydrin. Plant Physiol Biochem 42:657–662Hattori T, Terada T, Hamasuna S (1995) Regulation of the Osem gene by abscisic acid and the transcriptional activator VP1: analysis of cis-acting promoter elements required for regulation by abscisic acid and VP1. Plant J 7:913–925Higuchi R (1990) Recombinant PCR. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 177–183Hoekstra FA, Golosina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438Hundertmark M, Popova AV, Rausch S, Seckler R, Hincha DK (2012) Influence of drying on the secondary structure of intrinsically disordered and globular proteins. Biochem Biophys Res Commun 417:122–128Huntley S, Hamann N, Wegener-Feldbrügge S, Treuner-Lange A, Kube M, Reinhardt R, Klages S, Müller R, Ronning CM, Nierman WC, Søgaard-Andersen L (2011) Comparative genomic analysis of fruiting body formation in Myxococcales. Mol Biol Evol 28:1083–1097Imai R, Chang L, Ohta A, Bray EA, Takagi M (1996) A lea-class gene of tomato confers salt and freezing tolerance when expressed in Saccharomyces cerevisiae. Gene 170:243–248Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403Kikawada T, Nakahara Y, Kanamori Y, Iwata K-I, Watanabe M, McGee B, Tunnacliffe A, Okuda T (2006) Dehydration-induced expression of LEA proteins in an anhydrobiotic chironomid. Biochem Biophys Res Commun 348:56–61Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25:1307–1320Lee K, Ebbole DJ (1998) Analysis of two transcription activation elements in the promoter of the developmentally regulated con-10 gene of Neurospora crassa. Fungal Genet Biol 23:259–268Liu Y, Zheng Y (2005) PM2, a group 3 LEA protein from soybean, and its 22-mer repeating region confer salt tolerance in Escherichia coli. Biochem Biophys Res Commun 331:325–332Manfre AJ, Lanni LM, Marcotte WR Jr (2006) The Arabidopsis group 1 LATE EMBRYOGENESIS ABUNDANT protein ATEM6 is required for normal seed development. Plant Physiol 140:140–149Manfre AJ, LaHatte GA, Climer CR, Marcotte WR Jr (2009) Seed dehydration and the establishment of desiccation tolerance during seed maturation is altered in the Arabidopsis thaliana mutant atem6-1. Plant Cell Physiol 50:243–253Marcotte WR Jr, Russell SH, Quatrano RS (1989) Abscisic acid responsive sequences from the Em gene of wheat. Plant Cell 1:969–976Maul B, Volker U, Riethdorf S, Engelmann S, Hecker M (1995) Sigma B-dependent regulation of gsiB in response to multiple stimuli in Bacillus subtilis. Mol Gen Genet 248:114–120Olvera-Carrillo Y, Campos F, Reyes JL, Garciarrubio A, Covarrubias AA (2010) Functional analysis of the group 4 late embryogenesis abundant proteins reveals their relevance in the adaptive response during water deficit in Arabidopsis thaliana. Plant Physiol 154:373–390Olvera-Carrillo Y, Reyes JL, Covarrubias AA (2011) Late embryogenesis abundant proteins, versatile players in the plant adaptation to water limiting environments. Plant Signal Behav 6:586–589Parcy F, Valon C, Raynal M, Gaubier-Comella P, Delseny M, Giraudat J (1994) Regulation of gene expression programs during Arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid. Plant Cell 6:1567–1582Patel GB, Sprott GD (1990) Methanosaeta concilii gen. nov., sp. nov. (“Methanothrix concilii”) and Methanosaeta thermoacetophila nom. rev., comb. nov. Int J Syst Bacteriol 40:79–82Reyes JL, Rodrigo MJ, Colmenero-Flores JM, Gil JV, Garay-Arroyo A, Campos F, Salamini F, Bartels D, Covarrubias AA (2005) Hydrophilins from distant organisms can protect enzymatic activities from water limitation effects in vitro. Plant Cell Environ 28:709–718Reyes JL, Campos F, Wei H, Arora R, Yang Y, Karlson DT, Covarrubias AA (2008) Functional dissection of hydrophilins during in vitro freeze protection. Plant Cell Environ 31:1781–1790Sharon MA, Kozarova A, Clegg JS, Vacratsis PO, Warner AH (2009) Characterization of a group 1 late embryogenesis abundant protein in encysted embryos of the brine shrimp Artemia franciscana. Biochem Cell Biol 87:415–430Shih MD, Hoekstra FA, Hsing YC (2008) Late embryogenesis abundant proteins. Adv Bot Res 48:211–255Shih MD, Huang LT, Wei FJ, Wu MT, Folkert A, Hoekstra FA, Hsing YC (2010) OsLEA1a, a new Em-like protein of cereal plants. Plant Cell Physiol 51:2132–2144Soulages JL, Kim K, Walters C, Cushman JC (2002) Temperature-induced extended helix/random coil transitions in a group 1 late embryogenesis-abundant protein from soybean. Plant Physiol 128:822–832Stacy RAP, Aalen RB (1998) Identification of sequence homology between the internal hydrophilic repeated motifs of Group 1 late-embryogenesis-abundant proteins in plants and hydrophilic repeats of the general stress protein GsiB of Bacillus subtilis. Planta 206:476–478Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690Tompa P, Bánki P, Bokor M, Kamasa P, Kovács D, Lasanda G, Tompa K (2006) Protein–water and protein–buffer interactions in the aqueous solution of an intrinsically unstructured plant dehydrin: NMR intensity and DSC aspects. Biophysical J 91:2243–2249Tunnacliffe A, Lapinski J, McGee B (2005) A putative LEA protein, but no trehalose, is present in anhydrobiotic bdelloid rotifers. Hydrobiologia 181:315–321Vicient C, Hull G, Guilleminot J, Devic M, Delseny M (2000) Differential expression of the Arabidopsis genes coding for Em-like proteins. J Exp Bot 51:1211–1220Warner AH, Miroshnychenko O, Kozarova A, Vacratsis PO, MacRae TH, Kim J, Clegg JS (2010) Evidence for multiple group 1 late embryogenesis abundant proteins in encysted embryos of Artemia and their organelles. J Biochem 148:581–592Wolkers WF, McCready S, Brandt WF, Lindsey GG, Hoekstra FA (2001) Isolation and characterization of a D-7 LEA protein from pollen that stabilizes glasses in vitro. Biochim Biophys Acta 1544:196–206Xu D, Duan X, Wang B, Hong B, Ho T, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257Yotsui I, Saruhashi M, Kawato T, Taji T, Hayashi T, Quatrano RS, Sakata Y (2013) ABSCISIC ACID INSENSITIVE3 regulates abscisic acid-responsive gene expression with the nuclear factor Y complex through the ACTT-core element in Physcomitrella patens. New Phytol. doi: 10.1111/nph.12251Zou Y, Hong R, He S, Liu G, Huang Z, Zheng Y (2011) Polyproline II structure is critical for the enzyme protective function of soybean Em (LEA1) conserved domains. Biotechnol Lett 33:1667–167
    corecore