1,285 research outputs found

    Asymptotically Optimal Approximation Algorithms for Coflow Scheduling

    Full text link
    Many modern datacenter applications involve large-scale computations composed of multiple data flows that need to be completed over a shared set of distributed resources. Such a computation completes when all of its flows complete. A useful abstraction for modeling such scenarios is a {\em coflow}, which is a collection of flows (e.g., tasks, packets, data transmissions) that all share the same performance goal. In this paper, we present the first approximation algorithms for scheduling coflows over general network topologies with the objective of minimizing total weighted completion time. We consider two different models for coflows based on the nature of individual flows: circuits, and packets. We design constant-factor polynomial-time approximation algorithms for scheduling packet-based coflows with or without given flow paths, and circuit-based coflows with given flow paths. Furthermore, we give an O(log⁥n/log⁥log⁥n)O(\log n/\log \log n)-approximation polynomial time algorithm for scheduling circuit-based coflows where flow paths are not given (here nn is the number of network edges). We obtain our results by developing a general framework for coflow schedules, based on interval-indexed linear programs, which may extend to other coflow models and objective functions and may also yield improved approximation bounds for specific network scenarios. We also present an experimental evaluation of our approach for circuit-based coflows that show a performance improvement of at least 22% on average over competing heuristics.Comment: Fixed minor typo

    Genome Mutational and Transcriptional Hotspots Are Traps for Duplicated Genes and Sources of Adaptations

    Full text link
    [EN] Gene duplication generates new genetic material, which has been shown to lead to major innovations in unicellular and multicellular organisms. A whole-genome duplication occurred in the ancestor of Saccharomyces yeast species but 92% of duplicates returned to single-copy genes shortly after duplication. The persisting duplicated genes in Saccharomyces led to the origin of major metabolic innovations, which have been the source of the unique biotechnological capabilities in the Baker's yeast Saccharomyces cerevisiae. What factors have determined the fate of duplicated genes remains unknown. Here, we report the first demonstration that the local genome mutation and transcription rates determine the fate of duplicates. We show, for the first time, a preferential location of duplicated genes in the mutational and transcriptional hotspots of S. cerevisiae genome. The mechanism of duplication matters, with whole-genome duplicates exhibiting different preservation trends compared to small-scale duplicates. Genome mutational and transcriptional hotspots are rich in duplicates with large repetitive promoter elements. Saccharomyces cerevisiae shows more tolerance to deleterious mutations in duplicates with repetitive promoter elements, which in turn exhibit higher transcriptional plasticity against environmental perturbations. Our data demonstrate that the genome traps duplicates through the accelerated regulatory and functional divergence of their gene copies providing a source of novel adaptations in yeast.This study was supported by a grant (reference: FEDER-BFU2015-66073-P) from the Spanish Ministerio de Economia y Competitividad-FEDER and a grant (reference: ACOMP/2015/026) from the local government Conselleria de Educacion Investigacion, Cultura y Deporte, Generalitat Valenciana to M.A.F. C.T. was supported by a grant Juan de la Cierva from the Spanish Ministerio de Economia y Competitividad (reference: JCA-2012-14056).Fares Riaño, MA.; Sabater-Muñoz, B.; Toft, C. (2017). Genome Mutational and Transcriptional Hotspots Are Traps for Duplicated Genes and Sources of Adaptations. Genome Biology and Evolution. 9(5):1229-1240. https://doi.org/10.1093/gbe/evx085S1229124095Agier, N., & Fischer, G. (2011). The Mutational Profile of the Yeast Genome Is Shaped by Replication. Molecular Biology and Evolution, 29(3), 905-913. doi:10.1093/molbev/msr280Altschul, S. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389-3402. doi:10.1093/nar/25.17.3389Anders, S., & Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biology, 11(10). doi:10.1186/gb-2010-11-10-r106Berry, D. B., & Gasch, A. P. (2008). Stress-activated Genomic Expression Changes Serve a Preparative Role for Impending Stress in Yeast. Molecular Biology of the Cell, 19(11), 4580-4587. doi:10.1091/mbc.e07-07-0680Birchler, J. A., Bhadra, U., Bhadra, M. P., & Auger, D. L. (2001). Dosage-Dependent Gene Regulation in Multicellular Eukaryotes: Implications for Dosage Compensation, Aneuploid Syndromes, and Quantitative Traits. Developmental Biology, 234(2), 275-288. doi:10.1006/dbio.2001.0262Birchler, J. A., Riddle, N. C., Auger, D. L., & Veitia, R. A. (2005). Dosage balance in gene regulation: biological implications. Trends in Genetics, 21(4), 219-226. doi:10.1016/j.tig.2005.02.010Birchler, J. A., & Veitia, R. A. (2012). Gene balance hypothesis: Connecting issues of dosage sensitivity across biological disciplines. Proceedings of the National Academy of Sciences, 109(37), 14746-14753. doi:10.1073/pnas.1207726109Bro, C., Regenberg, B., Lagniel, G., Labarre, J., Montero-LomelĂ­, M., & Nielsen, J. (2003). Transcriptional, Proteomic, and Metabolic Responses to Lithium in Galactose-grown Yeast Cells. Journal of Biological Chemistry, 278(34), 32141-32149. doi:10.1074/jbc.m304478200Byrne, K. P. (2005). The Yeast Gene Order Browser: Combining curated homology and syntenic context reveals gene fate in polyploid species. Genome Research, 15(10), 1456-1461. doi:10.1101/gr.3672305Carretero-Paulet, L., & Fares, M. A. (2012). Evolutionary Dynamics and Functional Specialization of Plant Paralogs Formed by Whole and Small-Scale Genome Duplications. Molecular Biology and Evolution, 29(11), 3541-3551. doi:10.1093/molbev/mss162Casamayor, A., Serrano, R., Platara, M., Casado, C., Ruiz, A., & Ariño, J. (2012). The role of the Snf1 kinase in the adaptive response of Saccharomyces cerevisiae to alkaline pH stress. Biochemical Journal, 444(1), 39-49. doi:10.1042/bj20112099Chuang, J. H., & Li, H. (2004). Functional Bias and Spatial Organization of Genes in Mutational Hot and Cold Regions in the Human Genome. PLoS Biology, 2(2), e29. doi:10.1371/journal.pbio.0020029Clark, A. G. (1994). Invasion and maintenance of a gene duplication. Proceedings of the National Academy of Sciences, 91(8), 2950-2954. doi:10.1073/pnas.91.8.2950Conant, G. C., & Wolfe, K. H. (2008). Turning a hobby into a job: How duplicated genes find new functions. Nature Reviews Genetics, 9(12), 938-950. doi:10.1038/nrg2482Costanzo, M., Baryshnikova, A., Bellay, J., Kim, Y., Spear, E. D., Sevier, C. S., 
 Mostafavi, S. (2010). The Genetic Landscape of a Cell. Science, 327(5964), 425-431. doi:10.1126/science.1180823Deatherage, D. E., & Barrick, J. E. (2014). Identification of Mutations in Laboratory-Evolved Microbes from Next-Generation Sequencing Data Using breseq. Engineering and Analyzing Multicellular Systems, 165-188. doi:10.1007/978-1-4939-0554-6_12Fares, M. A. (2015). The origins of mutational robustness. Trends in Genetics, 31(7), 373-381. doi:10.1016/j.tig.2015.04.008Fares, M. A., Keane, O. M., Toft, C., Carretero-Paulet, L., & Jones, G. W. (2013). The Roles of Whole-Genome and Small-Scale Duplications in the Functional Specialization of Saccharomyces cerevisiae Genes. PLoS Genetics, 9(1), e1003176. doi:10.1371/journal.pgen.1003176Freeling, M. (2006). Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome Research, 16(7), 805-814. doi:10.1101/gr.3681406GarcĂ­a-RodrĂ­guez, N., DĂ­az de la Loza, M. del C., Andreson, B., Monje-Casas, F., Rothstein, R., & Wellinger, R. E. (2012). Impaired Manganese Metabolism Causes Mitotic Misregulation. Journal of Biological Chemistry, 287(22), 18717-18729. doi:10.1074/jbc.m112.358309Gemayel, R., Vinces, M. D., Legendre, M., & Verstrepen, K. J. (2010). Variable Tandem Repeats Accelerate Evolution of Coding and Regulatory Sequences. Annual Review of Genetics, 44(1), 445-477. doi:10.1146/annurev-genet-072610-155046Gout, J.-F., Duret, L., & Kahn, D. (2009). Differential Retention of Metabolic Genes Following Whole-Genome Duplication. Molecular Biology and Evolution, 26(5), 1067-1072. doi:10.1093/molbev/msp026Gout, J.-F., Kahn, D., & Duret, L. (2010). The Relationship among Gene Expression, the Evolution of Gene Dosage, and the Rate of Protein Evolution. PLoS Genetics, 6(5), e1000944. doi:10.1371/journal.pgen.1000944Gout, J.-F., & Lynch, M. (2015). Maintenance and Loss of Duplicated Genes by Dosage Subfunctionalization. Molecular Biology and Evolution, 32(8), 2141-2148. doi:10.1093/molbev/msv095Guan, Y., Dunham, M. J., & Troyanskaya, O. G. (2006). Functional Analysis of Gene Duplications inSaccharomyces cerevisiae. Genetics, 175(2), 933-943. doi:10.1534/genetics.106.064329Ibba, M. (1999). Quality Control Mechanisms During Translation. Science, 286(5446), 1893-1897. doi:10.1126/science.286.5446.1893Jansen, M. L. A., Diderich, J. A., Mashego, M., Hassane, A., de Winde, J. H., Daran-Lapujade, P., & Pronk, J. T. (2005). Prolonged selection in aerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae causes a partial loss of glycolytic capacity. Microbiology, 151(5), 1657-1669. doi:10.1099/mic.0.27577-0Kafri, R., Bar-Even, A., & Pilpel, Y. (2005). Transcription control reprogramming in genetic backup circuits. Nature Genetics, 37(3), 295-299. doi:10.1038/ng1523Keane, O. M., Toft, C., Carretero-Paulet, L., Jones, G. W., & Fares, M. A. (2014). Preservation of genetic and regulatory robustness in ancient gene duplicates ofSaccharomyces cerevisiae. Genome Research, 24(11), 1830-1841. doi:10.1101/gr.176792.114Kimura, M., & Takahata, N. (1983). Selective constraint in protein polymorphism: Study of the effectively neutral mutation model by using an improved pseudosampling method. Proceedings of the National Academy of Sciences, 80(4), 1048-1052. doi:10.1073/pnas.80.4.1048Lang, G. I., & Murray, A. W. (2011). Mutation Rates across Budding Yeast Chromosome VI Are Correlated with Replication Timing. Genome Biology and Evolution, 3, 799-811. doi:10.1093/gbe/evr054LaRiviere, F. J. (2001). Uniform Binding of Aminoacyl-tRNAs to Elongation Factor Tu by Thermodynamic Compensation. Science, 294(5540), 165-168. doi:10.1126/science.1064242Liti, G., Carter, D. M., Moses, A. M., Warringer, J., Parts, L., James, S. A., 
 Louis, E. J. (2009). Population genomics of domestic and wild yeasts. Nature, 458(7236), 337-341. doi:10.1038/nature07743Lohse, M., Bolger, A. M., Nagel, A., Fernie, A. R., Lunn, J. E., Stitt, M., & Usadel, B. (2012). RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic Acids Research, 40(W1), W622-W627. doi:10.1093/nar/gks540Makino, T., McLysaght, A., & Kawata, M. (2013). Genome-wide deserts for copy number variation in vertebrates. Nature Communications, 4(1). doi:10.1038/ncomms3283Marcet-Houben, M., & GabaldĂłn, T. (2015). Beyond the Whole-Genome Duplication: Phylogenetic Evidence for an Ancient Interspecies Hybridization in the Baker’s Yeast Lineage. PLOS Biology, 13(8), e1002220. doi:10.1371/journal.pbio.1002220Martin, P., Makepeace, K., Hill, S. A., Hood, D. W., & Moxon, E. R. (2005). Microsatellite instability regulates transcription factor binding and gene expression. Proceedings of the National Academy of Sciences, 102(10), 3800-3804. doi:10.1073/pnas.0406805102Mattenberger, F., Sabater-Muñoz, B., Hallsworth, J. E., & Fares, M. A. (2017). Glycerol stress inSaccharomyces cerevisiae: Cellular responses and evolved adaptations. Environmental Microbiology, 19(3), 990-1007. doi:10.1111/1462-2920.13603Mattenberger, F., Sabater-Muñoz, B., Toft, C., & Fares, M. A. (2016). The Phenotypic Plasticity of Duplicated Genes in Saccharomyces cerevisiae and the Origin of Adaptations. G3: Genes|Genomes|Genetics, 7(1), 63-75. doi:10.1534/g3.116.035329Nagalakshmi, U., Wang, Z., Waern, K., Shou, C., Raha, D., Gerstein, M., & Snyder, M. (2008). The Transcriptional Landscape of the Yeast Genome Defined by RNA Sequencing. Science, 320(5881), 1344-1349. doi:10.1126/science.1158441O’Hely, M. (2006). A Diffusion Approach to Approximating Preservation Probabilities for Gene Duplicates. Journal of Mathematical Biology, 53(2), 215-230. doi:10.1007/s00285-006-0001-6Ohno, S. (1999). Gene duplication and the uniqueness of vertebrate genomes circa 1970–1999. Seminars in Cell & Developmental Biology, 10(5), 517-522. doi:10.1006/scdb.1999.0332Papp, B., PĂĄl, C., & Hurst, L. D. (2003). Dosage sensitivity and the evolution of gene families in yeast. Nature, 424(6945), 194-197. doi:10.1038/nature01771Park, C., Qian, W., & Zhang, J. (2012). Genomic evidence for elevated mutation rates in highly expressed genes. EMBO reports, 13(12), 1123-1129. doi:10.1038/embor.2012.165Payne, J. L., & Wagner, A. (2014). The Robustness and Evolvability of Transcription Factor Binding Sites. Science, 343(6173), 875-877. doi:10.1126/science.1249046Pu, S., Wong, J., Turner, B., Cho, E., & Wodak, S. J. (2008). Up-to-date catalogues of yeast protein complexes. Nucleic Acids Research, 37(3), 825-831. doi:10.1093/nar/gkn1005Qian, W., Liao, B.-Y., Chang, A. Y.-F., & Zhang, J. (2010). Maintenance of duplicate genes and their functional redundancy by reduced expression. Trends in Genetics, 26(10), 425-430. doi:10.1016/j.tig.2010.07.002Raghuraman, M. K. (2001). Replication Dynamics of the Yeast Genome. Science, 294(5540), 115-121. doi:10.1126/science.294.5540.115Rando, O. J., & Verstrepen, K. J. (2007). Timescales of Genetic and Epigenetic Inheritance. Cell, 128(4), 655-668. doi:10.1016/j.cell.2007.01.023Reynolds, N. M., Ling, J., Roy, H., Banerjee, R., Repasky, S. E., Hamel, P., & Ibba, M. (2010). Cell-specific differences in the requirements for translation quality control. Proceedings of the National Academy of Sciences, 107(9), 4063-4068. doi:10.1073/pnas.0909640107Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2009). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139-140. doi:10.1093/bioinformatics/btp616Rockman, M. V., & Wray, G. A. (2002). Abundant Raw Material for Cis-Regulatory Evolution in Humans. Molecular Biology and Evolution, 19(11), 1991-2004. doi:10.1093/oxfordjournals.molbev.a004023Ruan, B., Palioura, S., Sabina, J., Marvin-Guy, L., Kochhar, S., LaRossa, R. A., & Soll, D. (2008). Quality control despite mistranslation caused by an ambiguous genetic code. Proceedings of the National Academy of Sciences, 105(43), 16502-16507. doi:10.1073/pnas.0809179105Schuster-Böckler, B., & Lehner, B. (2012). Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature, 488(7412), 504-507. doi:10.1038/nature11273Seoighe, C., & Wolfe, K. H. (1999). Yeast genome evolution in the post-genome era. Current Opinion in Microbiology, 2(5), 548-554. doi:10.1016/s1369-5274(99)00015-6Streelman, J. T., & Kocher, T. D. (2002). Microsatellite variation associated with prolactin expression and growth of salt-challenged tilapia. Physiological Genomics, 9(1), 1-4. doi:10.1152/physiolgenomics.00105.2001Supek, F., & Lehner, B. (2015). Differential DNA mismatch repair underlies mutation rate variation across the human genome. Nature, 521(7550), 81-84. doi:10.1038/nature14173Taylor, J. S., & Raes, J. (2004). Duplication and Divergence: The Evolution of New Genes and Old Ideas. Annual Review of Genetics, 38(1), 615-643. doi:10.1146/annurev.genet.38.072902.092831Tirosh, I., Barkai, N., & Verstrepen, K. J. (2009). Promoter architecture and the evolvability of gene expression. Journal of Biology, 8(11), 95. doi:10.1186/jbiol204Tong, A. H. Y. (2001). Systematic Genetic Analysis with Ordered Arrays of Yeast Deletion Mutants. Science, 294(5550), 2364-2368. doi:10.1126/science.1065810Vinces, M. D., Legendre, M., Caldara, M., Hagihara, M., & Verstrepen, K. J. (2009). Unstable Tandem Repeats in Promoters Confer Transcriptional Evolvability. Science, 324(5931), 1213-1216. doi:10.1126/science.1170097Wapinski, I., Pfeffer, A., Friedman, N., & Regev, A. (2007). Natural history and evolutionary principles of gene duplication in fungi. Nature, 449(7158), 54-61. doi:10.1038/nature06107Wolfe, K. H., & Shields, D. C. (1997). Molecular evidence for an ancient duplication of the entire yeast genome. Nature, 387(6634), 708-713. doi:10.1038/42711Yang, Z. (2007). PAML 4: Phylogenetic Analysis by Maximum Likelihood. Molecular Biology and Evolution, 24(8), 1586-1591. doi:10.1093/molbev/msm088Zaher, H. S., & Green, R. (2008). Quality control by the ribosome following peptide bond formation. Nature, 457(7226), 161-166. doi:10.1038/nature0758

    On the Connection Between Flap Side-Edge Noise and Tip Vortex Dynamics

    Get PDF
    The goal of the present work is to investigate how the dynamics of the vortical flow about the flap side edge of an aircraft determine the acoustic radiation. A validated lattice- Boltzmann CFD solution of the unsteady flow about a detailed business jet configuration in approach conditions is used for the present analysis. Evidence of the connection between the noise generated by several segments of the inboard flap tip and the aerodynamic forces acting on the same segments is given, proving that the noise generation mechanism has a spatially coherent and acoustically compact character on the scale of the flap chord, and that the edge-scattering effects are of secondary importance. Subsequently, evidence of the connection between the kinematics of the tip vortex system and the aerodynamic force is provided. The kinematics of the dual vortex system are investigated via a core detection technique. Emphasis is placed on the mutual induction effects between the two main vortices rolling up from the pressure and suction sides of the flap edge. A simple heuristic formula that relates the far-field noise spectrum and the cross-spectrum of the unsteady vortical positions is developed

    Environmental controls on ozone fluxes in a poplar plantation in Western Europe

    Get PDF
    Tropospheric O-3 is a strong oxidant that may affect vegetation and human health. Here we report on the O-3 fluxes from a poplar plantation in Belgium during one year. Surprisingly, the winter and autumn O-3 fluxes were of similar magnitude to ones observed during most of the peak vegetation development. Largest O-3 uptakes were recorded at the beginning of the growing season in correspondence to a minimum stomatal uptake. Wind speed was the most important control and explained 44% of the variability in the nighttime O-3 fluxes, suggesting that turbulent mixing and the mechanical destruction of O-3 played a substantial role in the O-3 fluxes. The stomatal O-3 uptake accounted for a seasonal average of 59% of the total O-3 uptake. Multiple regression and partial correlation analyses showed that net ecosystem exchange was not affected by the stomatal O-3 uptake. (C) 2013 The Authors. Published by Elsevier Ltd. All rights reserved

    Interpenetrating network gelatin methacryloyl (GelMA) and pectin-g-PCL hydrogels with tunable properties for tissue engineering.

    Get PDF
    The design of new hydrogel-based biomaterials with tunable physical and biological properties is essential for the advancement of applications related to tissue engineering and regenerative medicine. For instance, interpenetrating polymer network (IPN) and semi-IPN hydrogels have been widely explored to engineer functional tissues due to their characteristic microstructural and mechanical properties. Here, we engineered IPN and semi-IPN hydrogels comprised of a tough pectin grafted polycaprolactone (pectin-g-PCL) component to provide mechanical stability, and a highly cytocompatible gelatin methacryloyl (GelMA) component to support cellular growth and proliferation. IPN hydrogels were formed by calcium ion (Ca2+)-crosslinking of pectin-g-PCL chains, followed by photocrosslinking of the GelMA precursor. Conversely, semi-IPN networks were formed by photocrosslinking of the pectin-g-PCL and GelMA mixture, in the absence of Ca2+ crosslinking. IPN and semi-IPN hydrogels synthesized with varying ratios of pectin-g-PCL to GelMA, with and without Ca2+-crosslinking, exhibited a broad range of mechanical properties. For semi-IPN hydrogels, the aggregation of microcrystalline cores led to formation of hydrogels with compressive moduli ranging from 3.1 to 10.4 kPa. For IPN hydrogels, the mechanistic optimization of pectin-g-PCL, GelMA, and Ca2+ concentrations resulted in hydrogels with comparatively higher compressive modulus, in the range of 39 kPa-5029 kPa. Our results also showed that IPN hydrogels were cytocompatible in vitro and could support the growth of three-dimensionally (3D) encapsulated MC3T3-E1 preosteoblasts in vitro. The simplicity, technical feasibility, low cost, tunable mechanical properties, and cytocompatibility of the engineered semi-IPN and IPN hydrogels highlight their potential for different tissue engineering and biomedical applications

    Artificial intelligence in orthopaedic surgery

    Get PDF
    The use of artificial intelligence (AI) is rapidly growing across many domains, of which the medical field is no exception. AI is an umbrella term defining the practical application of algorithms to generate useful output, without the need of human cognition. Owing to the expanding volume of patient information collected, known as ‘big data’, AI is showing promise as a useful tool in healthcare research and across all aspects of patient care pathways. Practical applications in orthopaedic surgery include: diagnostics, such as fracture recognition and tumour detection; predictive models of clinical and patient-reported outcome measures, such as calculating mortality rates and length of hospital stay; and real-time rehabilitation monitoring and surgical training. However, clinicians should remain cognizant of AI’s limitations, as the development of robust reporting and validation frameworks is of paramount importance to prevent avoidable errors and biases. The aim of this review article is to provide a comprehensive understanding of AI and its subfields, as well as to delineate its existing clinical applications in trauma and orthopaedic surgery. Furthermore, this narrative review expands upon the limitations of AI and future direction
    • 

    corecore