72 research outputs found

    Quantitative and systems pathology for therapeutic response prediction

    Get PDF
    The measurement of tissue biomarkers for therapeutic response prediction in cancer patients has become standard pathological practice, but only for a very limited number of targets. This is in spite of massive intellectual and financial investment in molecular pathology for translational cancer research. A re-evaluation of current approaches, and the testing of new ones, is required in order to meet the challenges of predicting responses to existing and novel therapeutics, and individualising therapy.Herein I critique the current state of tissue biomarker analysis and quantification in cancer pathology and the reasons why so few novel biomarkers have entered the clinic. In particular, we examine the central role of signalling pathway biology in sensitivity and resistance to targeted therapy. I discuss how accurate quantification, and the ability to simulate biological responses over time and space, may lead to more accurate prediction of therapeutic response. I propose that different mathematical techniques used in the nascent field of systems biology (ordinary differential equation-based, S-systems, and Bayesian approaches) may provide promising new avenues to improve prediction in clinical and pathological practice. I also discuss the challenges and opportunities for quantification in pathological research and practice.I have examined the role of cellular signalling pathways in therapeutic sensitivity and resistance in three different ways. Firstly, I have taken a hypothesis-driven and reductionist approach and shown that decreased Sprouty 2, a feedback inhibitor of MAPK and PI3K signalling, is associated with trastuzumab-resistance in vitro and in a cohort of breast cancer patients treated with trastuzumab. Secondly, I have characterised the activation state of ten growth and survival pathways across different histological subtypes of ovarian cancer using quantitative fluorescence microscopy. I have shown that unsupervised clustering of phosphoprotein expression profiles results in new subgroups with distinct biological properties (in terms of proliferation and apoptosis), and which predict therapeutic response to chemotherapy. Thirdly, I have developed a new mathematical model of PI3K signalling, parameterised using quantitative phosphoprotein expression data from cancer cell lines using reverse-phase protein microarrays, and shown that quantitative PTEN protein expression is the key determinant of resistance to anti-HER2 therapy in silico. Furthermore, the quantitative measurement of PTEN is more predictive of response than other pathway components taken in isolation and when tested by multivariate analysis in a cohort of breast cancers treated with trastuzumab. For the first time, a systems biology approach has successfully been used to stratify patients for personalised therapy in cancer, and is further compelling evidence that PTEN, appropriately measured in the clinical setting, refines clinical decision-making in patients treated with anti-HER2 therapies

    Compensatory effects in the PI3K/PTEN/AKT signaling network following receptor tyrosine kinase inhibition

    Get PDF
    Overcoming de novo and acquired resistance to anticancer drugs that target signaling networks is a formidable challenge for drug design and effective cancer therapy. Understanding the mechanisms by which this resistance arises may offer a route to addressing the insensitivity of signaling networks to drug intervention and restore the efficacy of anticancer therapy. Extending our recent work identifying PTEN as a key regulator of Herceptin sensitivity, we present an integrated theoretical and experimental approach to study the compensatory mechanisms within the PI3K/PTEN/AKT signaling network that afford resistance to receptor tyrosine kinase (RTK) inhibition by anti-HER2 monoclonal antibodies. In a computational model representing the dynamics of the signaling network, we define a single control parameter that encapsulates the balance of activities of the enzymes involved in the PI3K/PTEN/AKT cycle. By varying this control parameter we are able to demonstrate both distinct dynamic regimes of behavior of the signaling network and the transitions between those regimes. We demonstrate resistance, sensitivity, and suppression of RTK signals by the signaling network. Through model analysis we link the sensitivity-to-resistance transition to specific compensatory mechanisms within the signaling network. We study this transition in detail theoretically by variation of activities of PTEN, PI3K, AKT enzymes, and use the results to inform experiments that perturb the signaling network using combinatorial inhibition of RTK, PTEN, and PI3K enzymes in human ovarian carcinoma cell lines. We find good alignment between theoretical predictions and experimental results. We discuss the application of the results to the challenges of hypersensitivity of the signaling network to RTK signals, suppression of drug resistance, and efficacy of drug combinations in anticancer therapy

    Features of the reversible sensitivity-resistance transition in PI3K/PTEN/AKT signalling network after HER2 inhibition

    Get PDF
    Systems biology approaches that combine experimental data and theoretical modelling to understand cellular signalling network dynamics offer a useful platform to investigate the mechanisms of resistance to drug interventions and to identify combination drug treatments. Extending our work on modelling the PI3K/PTEN/AKT signalling network (SN), we analyse the sensitivity of the SN output signal, phospho-AKT, to inhibition of HER2 receptor. We model typical aberrations in this SN identified in cancer development and drug resistance: loss of PTEN activity, PI3K and AKT mutations, HER2 overexpression, and overproduction of GSK3β and CK2 kinases controlling PTEN phosphorylation. We show that HER2 inhibition by the monoclonal antibody pertuzumab increases SN sensitivity, both to external signals and to changes in kinetic parameters of the proteins and their expression levels induced by mutations in the SN. This increase in sensitivity arises from the transition of SN functioning from saturation to non-saturation mode in response to HER2 inhibition. PTEN loss or PIK3CA mutation causes resistance to anti-HER2 inhibitor and leads to the restoration of saturation mode in SN functioning with a consequent decrease in SN sensitivity. We suggest that a drug-induced increase in SN sensitivity to internal perturbations, and specifically mutations, causes SN fragility. In particular, the SN is vulnerable to mutations that compensate for drug action and this may result in a sensitivity-to-resistance transition. The combination of HER2 and PI3K inhibition does not sensitise the SN to internal perturbations (mutations) in the PI3K/PTEN/AKT pathway: this combination treatment provides both synergetic inhibition and may prevent the SN from acquired mutations causing drug resistance. Through combination inhibition treatments, we studied the impact of upstream and downstream interventions to suppress resistance to the HER2 inhibitor in the SN with PTEN loss. Comparison of experimental results of PI3K inhibition in the PTEN upstream pathway with PDK1 inhibition in the PTEN downstream pathway shows that upstream inhibition abrogates resistance to pertuzumab more effectively than downstream inhibition. This difference in inhibition effect arises from the compensatory mechanism of an activation loop induced in the downstream pathway by PTEN loss. We highlight that drug target identification for combination anti-cancer therapy needs to account for the mutation effects on the upstream and downstream pathways

    Heterogeneity Mapping of Protein Expression in Tumors using Quantitative Immunofluorescence

    Get PDF
    Morphologic heterogeneity within an individual tumor is well-recognized by histopathologists in surgical practice. While this often takes the form of areas of distinct differentiation into recognized histological subtypes, or different pathological grade, often there are more subtle differences in phenotype which defy accurate classification (Figure 1). Ultimately, since morphology is dictated by the underlying molecular phenotype, areas with visible differences are likely to be accompanied by differences in the expression of proteins which orchestrate cellular function and behavior, and therefore, appearance. The significance of visible and invisible (molecular) heterogeneity for prognosis is unknown, but recent evidence suggests that, at least at the genetic level, heterogeneity exists in the primary tumor1,2, and some of these sub-clones give rise to metastatic (and therefore lethal) disease

    The use of automated quantitative analysis to evaluate epithelial-to-mesenchymal transition associated proteins in clear cell renal cell carcinoma.

    Get PDF
    BACKGROUND: Epithelial-to-mesenchymal transition (EMT) has recently been implicated in the initiation and progression of renal cell carcinoma (RCC). Some mRNA gene expression studies have suggested a link between the EMT phenotype and poorer clinical outcome from RCC. This study evaluated expression of EMT-associated proteins in RCC using in situ automated quantitative analysis immunofluorescence (AQUA) and compared expression levels with clinical outcome. METHODS/PRINCIPAL FINDINGS: Unsupervised hierarchical cluster analysis of pre-existing RCC gene expression array data (GSE16449) from 36 patients revealed the presence of an EMT transcriptional signature in RCC [E-cadherin high/SLUG low/SNAIL low]. As automated immunofluorescence technology is dependent on accurate definition of the tumour cells in which measurements take place is critical, extensive optimisation was carried out resulting in a novel pan-cadherin based tumour mask that distinguishes renal cancer cells from stromal components. 61 patients with ccRCC and clinical follow-up were subsequently assessed for expression of EMT-associated proteins (WT1, SNAIL, SLUG, E-cadherin and phospho-β-catenin) on tissue microarrays. Using Kaplan-Meier analysis both SLUG (p = 0.029) and SNAIL (p = 0.024) (log rank Mantel-Cox) were significantly associated with prolonged progression free survival (PFS). Using Cox regression univariate and multivariate analysis none of the biomarkers were significantly correlated with outcome. 14 of the 61 patients expressed the gene expression analysis predicted EMT-protein signature [E-cadherin high/SLUG low/SNAIL low], which was not found to be associated to PFS when measured at the protein level. A combination of high expression of SNAIL and low stage was able to stratify patients with greater significance (p = 0.001) then either variable alone (high SNAIL p = 0.024, low stage p = 0.029). CONCLUSIONS: AQUA has been shown to have the potential to identify EMT related protein targets in RCC allowing for stratification of patients into high and low risk groups, as well the ability to assess the association of reputed EMT signatures to progression of the disease

    Multiscale genomic, transcriptomic and proteomic analysis of colorectal cancer cell lines to identify novel biomarkers

    Get PDF
    Introduction: Resistance to colorectal cancer (CRC) therapies is a significant cause of treatment failure. We used an in vitro model to identify novel therapeutic targets, explain mechanisms of carcinogenesis and resistance to therapy, and ultimately aid patient stratification for therapy. Methods: A panel of 15 CRC cell lines was profiled by comparative genomic hybridisation, gene expression profiling, reverse phase protein array analysis, and chemosensitivity assays with respect to 5fluorouracil, oxaliplatin, and BEZ235. As proof of concept, fluorescence in situ hybridization and automated quantitative protein analysis were employed to investigate a candidate biomarker in a CRC patient cohort (n=n8).peer-reviewe

    Transcript and protein profiling identifies signaling, growth arrest, apoptosis, and NF-κB survival signatures following GNRH receptor activation

    Get PDF
    GNRH significantly inhibits proliferation of a proportion of cancer cell lines by activating GNRH receptor (GNRHR)-G protein signaling. Therefore, manipulation of GNRHR signaling may have an under-utilized role in treating certain breast and ovarian cancers. However, the precise signaling pathways necessary for the effect and the features of cellular responses remain poorly defined. We used transcriptomic and proteomic profiling approaches to characterize the effects of GNRHR activation in sensitive cells (HEK293-GNRHR, SCL60) in vitro and in vivo, compared to unresponsive HEK293. Analyses of gene expression demonstrated a dynamic response to the GNRH superagonist Triptorelin. Early and mid-phase changes (0.5–1.0 h) comprised mainly transcription factors. Later changes (8–24 h) included a GNRH target gene, CGA, and up- or downregulation of transcripts encoding signaling and cell division machinery. Pathway analysis identified altered MAPK and cell cycle pathways, consistent with occurrence of G(2)/M arrest and apoptosis. Nuclear factor kappa B (NF-κB) pathway gene transcripts were differentially expressed between control and Triptorelin-treated SCL60 cultures. Reverse-phase protein and phospho-proteomic array analyses profiled responses in cultured cells and SCL60 xenografts in vivo during Triptorelin anti-proliferation. Increased phosphorylated NF-κB (p65) occurred in SCL60 in vitro, and p-NF-κB and IκBϵ were higher in treated xenografts than controls after 4 days Triptorelin. NF-κB inhibition enhanced the anti-proliferative effect of Triptorelin in SCL60 cultures. This study reveals details of pathways interacting with intense GNRHR signaling, identifies potential anti-proliferative target genes, and implicates the NF-κB survival pathway as a node for enhancing GNRH agonist-induced anti-proliferation

    Model-based global sensitivity analysis as applied to identification of anti-cancer drug targets and biomarkers of drug resistance in the ErbB2/3 network

    Get PDF
    High levels of variability in cancer-related cellular signalling networks and a lack of parameter identifiability in large-scale network models hamper translation of the results of modelling studies into the process of anti-cancer drug development. Recently global sensitivity analysis (GSA) has been recognised as a useful technique, capable of addressing the uncertainty of the model parameters and generating valid predictions on parametric sensitivities. Here we propose a novel implementation of model-based GSA specially designed to explore how multi-parametric network perturbations affect signal propagation through cancer-related networks. We use area-under-the-curve for time course of changes in phosphorylation of proteins as a characteristic for sensitivity analysis and rank network parameters with regard to their impact on the level of key cancer-related outputs, separating strong inhibitory from stimulatory effects. This allows interpretation of the results in terms which can incorporate the effects of potential anti-cancer drugs on targets and the associated biological markers of cancer. To illustrate the method we applied it to an ErbB signalling network model and explored the sensitivity profile of its key model readout, phosphorylated Akt, in the absence and presence of the ErbB2 inhibitor pertuzumab. The method successfully identified the parameters associated with elevation or suppression of Akt phosphorylation in the ErbB2/3 network. From analysis and comparison of the sensitivity profiles of pAkt in the absence and presence of targeted drugs we derived predictions of drug targets, cancer-related biomarkers and generated hypotheses for combinatorial therapy. Several key predictions have been confirmed in experiments using human ovarian carcinoma cell lines. We also compared GSA-derived predictions with the results of local sensitivity analysis and discuss the applicability of both methods. We propose that the developed GSA procedure can serve as a refining tool in combinatorial anti-cancer drug discovery.Publisher PDFPeer reviewe

    Diversity of Matriptase Expression Level and Function in Breast Cancer

    Get PDF
    Overexpression of matriptase has been reported in a variety of human cancers and is sufficient to trigger tumor formation in mice, but the importance of matriptase in breast cancer remains unclear. We analysed matriptase expression in 16 human breast cancer cell lines and in 107 primary breast tumors. The data revealed considerable diversity in the expression level of this protein indicating that the significance of matriptase may vary from case to case. Matriptase protein expression was correlated with HER2 expression and highest expression was seen in HER2-positive cell lines, indicating a potential role in this subgroup. Stable overexpression of matriptase in two breast cancer cell lines had different consequences. In MDA-MB-231 human breast carcinoma cells the only noted consequence of matriptase overexpression was modestly impaired growth in vivo. In contrast, overexpression of matriptase in 4T1 mouse breast carcinoma cells resulted in visible changes in morphology, actin staining and cell to cell contacts. This correlated with downregulation of the cell-cell adhesion molecule E-cadherin. These results suggest that the functions of matriptase in breast cancer are likely to be variable and cell context dependent
    corecore