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a b s t r a c t

High levels of variability in cancer-related cellular signalling networks and a lack of parameter identifi-
ability in large-scale network models hamper translation of the results of modelling studies into the pro-
cess of anti-cancer drug development. Recently global sensitivity analysis (GSA) has been recognised as a
useful technique, capable of addressing the uncertainty of the model parameters and generating valid
predictions on parametric sensitivities.

Here we propose a novel implementation of model-based GSA specially designed to explore how multi-
parametric network perturbations affect signal propagation through cancer-related networks. We use
area-under-the-curve for time course of changes in phosphorylation of proteins as a characteristic for
sensitivity analysis and rank network parameters with regard to their impact on the level of key can-
cer-related outputs, separating strong inhibitory from stimulatory effects. This allows interpretation of
the results in terms which can incorporate the effects of potential anti-cancer drugs on targets and the
associated biological markers of cancer. To illustrate the method we applied it to an ErbB signalling net-
work model and explored the sensitivity profile of its key model readout, phosphorylated Akt, in the
absence and presence of the ErbB2 inhibitor pertuzumab. The method successfully identified the param-
eters associated with elevation or suppression of Akt phosphorylation in the ErbB2/3 network. From anal-
ysis and comparison of the sensitivity profiles of pAkt in the absence and presence of targeted drugs we
derived predictions of drug targets, cancer-related biomarkers and generated hypotheses for combinato-
rial therapy. Several key predictions have been confirmed in experiments using human ovarian carci-
noma cell lines. We also compared GSA-derived predictions with the results of local sensitivity
analysis and discuss the applicability of both methods. We propose that the developed GSA procedure
can serve as a refining tool in combinatorial anti-cancer drug discovery.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction examples of successful practical exploitation of pathway models
Development of prognostic and predictive models for diagnos-
tics and therapeutic applications is one of the major goals of
so-called mathematical oncology (Anderson and Quaranta, 2008;
Auffray et al., 2009; Clermont et al., 2009). Network modelling
techniques promise to substantially advance our understanding
of the complexity of cancer-related pathways and likely mecha-
nisms of disease (Chen et al., 2009; Hatakeyama, 2007; Kreeger
and Lauffenburger, 2010; Nakakuki et al., 2008). However,
ll rights reserved.

deva).

tics and Systems Pathology,
to optimize anti-cancer therapies are rare. One case where a kinetic
modelling approach has proved to be productive is in identifying
novel anti-cancer drug targets (Schoeberl et al., 2009), based on
the results of local sensitivity analysis. This led to the design of a
novel drug candidate MM-121, which is a human monoclonal anti-
body that targets ErbB3 (Schoeberl et al., 2010). In our recent stud-
ies (Faratian et al., 2009b; Goltsov et al., 2011) we applied
computational modelling methods, based on elucidation of control
parameters within the PI3K/PTEN/Akt signalling module, to ex-
plore the mechanisms of therapeutic resistance to anti-ErbB2
inhibitors in human ovarian carcinoma cell lines. Thus we con-
firmed the role of quantitative PTEN protein expression as a key
determinant and putative biomarker of therapeutic resistance.

One of the major barriers to more successful translation of the
results of modelling studies into clinical practice and anti-cancer

http://dx.doi.org/10.1016/j.ejps.2011.10.026
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drug development is a high level of individual variability of the cel-
lular networks involved in seemingly identical cancers, not only
due to genomic abnormalities (Kan et al., 2010), but also complex
post-transcriptional and post-translational variability in protein
signalling networks (Faratian et al., 2009a). This causes a signifi-
cant variation in individual responses to targeted anti-cancer treat-
ments and therefore questions the practical utility of conclusions
that can be drawn from network models with fixed parameters. In-
deed, the majority of existing cancer-related modelling studies
have been performed in a canonical way, where network model
construction is followed by its parameterisation via fitting the
model to experimental data, and further analysis of one or several
best solutions (Birtwistle et al., 2007; Chen et al., 2009; Faratian
et al., 2009b; Schoeberl et al., 2009). The experimental data, used
for model calibration, usually represent a set of time-course pro-
files of changes in protein phosphorylation, observed in response
to perturbation of signalling with various receptor ligands. Given
that such data are normally registered for a particular cancer cell
line, the quantitative predictions (e.g. on promising drug targets)
drawn from the model analysis, though applicable to the reference
cell type, may not be readily transferable to other subtypes of can-
cer, due to possible biological variation of the network parameters
in different cell lines, as well as potential noise in parameter esti-
mates caused by the noise in experimental data. This may explain
the slow incorporation of systems biology approaches as credible
clinical tools.

Another key but related impediment is the non-identifiability of
model parameters, a problem common to many large-scale
network models (Chen et al., 2009; Hengl et al., 2007; Rodriguez-
Fernandez, 2006; Yue et al., 2006). In complex biochemical models
many parameters remain uncertain even when additional data are
generated and different fitting algorithms are implemented
(Brown and Sethna, 2003; Chen et al., 2009). The majority of mod-
elling studies employ various types of sensitivity analysis (SA) to
assess how variation in input parameters can affect the model out-
put. The most generally used method is local sensitivity analysis
(LSA), based on evaluation of the impact of single parametric per-
turbations on the model output in close proximity to a reference
solution, defined by nominal parameter values. From this basis,
the predictions are made how oncogenic mutations may affect sig-
nal propagation through the network (Birtwistle et al., 2007; Chen
et al., 2009) and thus potential targets for anti-cancer drugs are
suggested (Schoeberl et al., 2009). Because of the poor identifiabil-
ity of model parameters the reliability of the conclusions drawn
from LSA remains a serious drawback.

Therefore there is a need to develop theoretical approaches
capable of addressing individual variability of signalling networks,
and drawing valid predictions from the models with uncertain
parameters. One suitable framework, offering appropriate mathe-
matical apparatus, is global sensitivity analysis (GSA). In contrast
to LSA, which estimates the effect of small variations of individual
parameters on the model output in a proximity to a single solution,
GSA allows exploration of the sensitivity of model outputs to the
simultaneous perturbation of multiple parameters within a param-
eter space (Marino et al., 2008; Saltelli, 2004; Saltelli et al., 2008; Zi
et al., 2008). Recently there has been a growing recognition of the
potential benefits of using GSA techniques for network model anal-
ysis (Balsa-Canto et al., 2010; Marino et al., 2008; Rodriguez-
Fernandez and Banga, 2010). Although examples of the application
of GSA to biochemical network models are still rare, they have
already shown promise for understanding the effects of multi-
parametric perturbations on biologically meaningful model
outputs (Jia et al., 2007; Kim et al., 2010; Marino et al., 2008; Yoon
and Deisboeck, 2009; Zheng and Rundell, 2006).

We propose a novel version of GSA, designed to explore the
sensitivity of integrated model readouts to the perturbation of
multiple model parameters within a parameter space, before and
after a targeted anti-cancer drug is introduced into a network sys-
tem. In our GSA implementation we place special emphasis on
identifying a set of critical parameters, controlling the level of
key output signals from the network, thereby providing a basis
for generating hypotheses on potential anti-cancer drug targets,
biomarkers of drug resistance, and combinatorial therapies. The
predictions drawn from our method are based on the analysis
and comparison of global sensitivity profiles of key model readouts
in the absence and presence of the drugs.

We demonstrate the capabilities of our approach by applying it
to our previously developed ErbB2/3 network model (Faratian
et al., 2009b), exploring the sensitivity of its key model readout,
pAkt, to simultaneous perturbation of all the model parameters
in the absence and presence of the ErbB2 inhibitor pertuzumab.
The GSA results, in addition to confirming our previous findings
on the role of PTEN as one of the key biomarkers of resistance to
anti-ErbB2 drugs, identified and allowed us to hypothesise that
several additional network components (e.g. PDK1, PI3K, PP2A) sig-
nificantly contribute to the control of network input–output
behaviour. These components can be drug targets (e.g. PDK1,
PI3K) or biomarkers of pertuzumab resistance (PI3K, PP2A), and
have been confirmed by experimentation and recent findings. We
also compare the results of GSA with LSA-derived predictions
and discuss the applicability of each method.

2. Material and methods

2.1. ErbB2/3 network model

In (Faratian et al., 2009b) we developed a kinetic model of
ErbB2/3 – related signalling in the PE04 human ovarian carcinoma
cell line, and from it we predicted consequences of anti-ErbB2
monoclonal antibody therapeutic interventions. Here we briefly
outline the model structure and highlight several minor modifica-
tions made for the purposes of this report. The general scheme for
the model is shown in Fig. 1. The model includes the description of
ErbB2 antibody receptor binding, ErbB2/ErbB3 dimerisation, Akt/
MAPK signalling and crosstalk. It also includes a simplified mech-
anistic description of the PTEN catalytic cycle and Akt/MAPK cross-
talk, via competition of phosphorylated forms of Akt and MEK for
PP2A phosphatase and inhibition of active Raf by phosphorylated
Akt.

In this contribution we introduced the following changes to our
previously developed model:

(1) We neglected three reactions describing auto-dephosphoryl-
ation of PTEN (reactions 36–38 in previous model), and replaced
them with a single generalized Michaelis-Menten-like reaction of
PTEN dephosphorylation (reaction V36). This allowed us to signif-
icantly reduce the computation time, as recalculation of the bal-
ance between various PTEN forms for each parameter set no
longer involved solving of an additional ODE subsystem as in the
previous implementation. This gain in performance was important
due to the computationally intensive nature of GSA, which
required running multiple simulations of the model.

(2) Two additional parameters (k14_1 and Km,14_1) were intro-
duced into the reaction rate 14 describing deactivation of Raf by
activated Akt, to separately account for the contribution of this
feedback into the overall sensitivity of the system.

Additional schemes for the separate blocks of the model, corre-
sponding ODE system and list of abbreviations are presented in
Additional File 1, Supplementary Figs. S1–S4, and Supplementary



Fig. 1. General scheme of the ErbB2/3 network model, presented in SBGN notation (Le Novere et al., 2009). Abbreviations used within the scheme are explained in
Supplementary Table S1. Additional schemes for particular blocks of the model can be found in Additional File 1.
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Table S1. The modified model included 54 ODEs and 91 parame-
ters; the SBML file of the model can be found in Additional File 4.

The resulting model was then recalibrated with the use of the
same set of time-series data, as in (Faratian et al., 2009b), the
time-course of protein phosphorylation in the PE04 ovarian carci-
noma cell line after stimulation with heregulin in the presence and
absence of the anti-ErbB2 inhibitor pertuzumab (see Fig. S6 in
Additional File 1). The model was not fully identifiable. The results
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of identifiability analysis are presented in Additional File 1. The
nominal parameter values, identified in one of the best fittings
are presented in Additional File 2 and Supplementary Table S2.

2.2. General overview of the GSA method

While the general GSA theory has been under development for
nearly three decades (Chang and Delleur, 1992; Saltelli et al.,
1999), the potential of using GSA for systems biology applications
has been recognised only relatively recently. Though the field is
currently rapidly developing (Marino et al., 2008; Rodriguez-
Fernandez and Banga, 2009; Rodriguez-Fernandez and Banga,
2010; Zi et al., 2008) there are no established standards in the
choice of particular techniques for specific applications. Depending
on the purpose of the analysis, various approaches have been
suggested to incorporate GSA in the general pipeline of network
model development and validation (Kim et al., 2010; Rodriguez-
Fernandez and Banga, 2010; Zi et al., 2008).

In this study we sought to develop a GSA procedure which
would be applicable to identification of the critical nodes that ex-
hibit the most control over the output signals from cancer-related
signalling networks, and therefore could be considered as candi-
dates for targeting with anti-cancer drugs, or as biological markers
of cancer and drug resistance.

Below we briefly outline the most popular GSA approaches cur-
rently in use, justify the choice of the techniques for our GSA pro-
cedure, describe the proposed algorithm and then highlight its
applied aspects.

In general, all global SA techniques are designed to allow explo-
ration of the model behaviour in the space of the model input fac-
tors. Therefore, at the first stage, they employ various sampling
algorithms for extraction of parameter sets from predefined areas
of parameter space. Then for each parameter set the model outputs
are calculated, and various SA methods are applied to deduce par-
ticular metrics to quantitatively describe model input–output rela-
tionships. Thus, one way of classifying the existing GSA
implementations would be to characterise them with regard to
their choice of (1) the sampling method, (2) the method for sensi-
tivity analysis, (3) the characteristic used to assess the parametric
sensitivity.

2.2.1. Choice of the sampling method
Classical ‘‘grid’’ approaches which would allow one to systemat-

ically cover the parameter space with ‘‘n’’ points on each individual
parameter direction, cannot be used in a high-dimensional space,
because of the exponential increase in volume associated with
adding extra dimensions to a mathematical space that results in
a computationally intractable task. That is why special sampling
algorithms should be employed to effectively extract the points
from a high-dimensional parameter space.

The most commonly used sampling methods are pure Monte-
Carlo (MC), when points are taken randomly from multi-dimen-
sional distribution (Balsa-Canto et al., 2010; Yoon and Deisboeck,
2009) and Latin Hypercube Sampling (LHS) (Jia et al., 2007; Marino
et al., 2008). LHS, a variant of stratified sampling without replace-
ment, ensures better estimation of the mean and the population
distribution function compared to pure random MC sampling
(Saltelli, 2004). In our GSA implementation, we used Sobol’s low-
discrepancy sequence (LDS) as our sampling method (Sobol,
1998). Sobol’s LDS belongs to the class of quasi-random sampling
methods, designed to systematically fill the gaps in the parameter
space, rather than to select points purely randomly. LDS of quasi-
random numbers has an important property in that the volume
of any hypercube within parameter space, covered by LDS, is pro-
portional to the number of sampled points within that hypercube.
This allows LDS to cover the parameter space more evenly
compared to MC and LHS. Each parameter combination, sampled
by Sobol’s algorithm, is unique, which means that sampling of N
Sobol’s points from a hypercube provides N variants of parameter
value on each individual parameter direction.

2.2.2. Choice of the SA method
Among the most popular methods of sensitivity analysis are

averaged local sensitivities (Balsa-Canto et al., 2010; Kim et al.,
2010; Zi et al., 2008), Sobol’s method (Kim et al., 2010;
Rodriguez-Fernandez and Banga, 2010; Zi et al., 2008), Partial Rank
Correlation Coefficient (PRCC) (Marino et al., 2008; Zi et al., 2008),
and Multi-Parametric Sensitivity Analysis (MPSA) (Yoon and
Deisboeck, 2009; Zi et al., 2008). In general, different SA methods
are better suited to specific types of analysis. For example, analysis
of a distribution of local sensitivities, can be very useful for the ini-
tial scoring of parameters prior to model calibration, especially if
sensitivity coefficients can be derived analytically and will not
require numerical differentiation, which significantly increases
the computational cost.

The choice of the particular SA method significantly depends on
the assumed relationship between the input parameters and
model output. If a linear trend can be assumed, the methods based
on calculation of the Pearson correlation coefficient can be
employed. For nonlinear but monotonic dependences, PRCC and
standardized rank regression coefficient (SRRC) appear to be the
best choice (Marino et al., 2008), as they work with rank trans-
formed values. If no assumption can be made about the relation-
ship between model inputs and outputs, or the dependence is
non-monotonic, another group of sensitivity methods can be
employed, based on decomposition of the variance of the model
output into partial variances, assessing the contribution of each
parameter to the total variance. One of the most powerful
variance-based methods is Sobol’s method; however it is also
known to be among the most computationally intensive, with
the cost growing exponentially with the dimensionality of the
parameter space (Rodriguez-Fernandez and Banga, 2010). Another
promising method that makes no assumptions about the depen-
dence between model parameters and outputs is MPSA (Jia et al.,
2007; Yoon and Deisboeck, 2009). In MPSA all outputs are divided
into two groups: ‘‘acceptable’’ and ‘‘unacceptable’’ and parameter
distributions in both groups are tested against the null hypothesis
that they are taken from the same distribution. The lower is the
probability of acceptance of null hypothesis, the higher is the
sensitivity of the parameter (Zi et al., 2008). When binary decom-
position of model outputs can be naturally introduced the results
of MPSA can be very useful (Yoon and Deisboeck, 2009).

In our GSA implementation we chose to use PRCC as the pre-
ferred method for SA, as one of the most efficient and reliable sam-
pling-based techniques (Marino et al., 2008). Importantly, PRCC
provides the sign of the sensitivity index for each parameter, there-
by allowing interpretation of sensitivity profiles in terms of inhibi-
tions/activations of corresponding proteins, which suits well the
purpose of our analysis. One caveat of the method is that it pre-
sumes a monotonic dependence of the model output on the input
parameters, which may not always be true. In case of unknown or
non-monotonic dependence MPSA could be a better choice. Impor-
tantly, during the testing of the method on the ErbB2/3 network
model, the preliminary visual analysis of the scatterplots revealed
no significant non-monotonicity in the relationship between input
parameters and key model outputs (see Additional File 3). This jus-
tified the choice of PRCC in this particular case.

2.2.3. Choice of the characteristic for the analysis
The choice of the characteristic for sensitivity analysis is key to

the method and depends on the specific purpose of the analysis.
The majority of known GSA implementations have been designed
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to support the model calibration process. Therefore their natural
choice was to analyse the metrics derived from the distance be-
tween a reference solution, defined by nominal parameters (or
experimental data) and a set of new solutions, defined by the sam-
pled parameter sets.

In developing our method, we pursued another goal: to employ
GSA techniques for identification of anti-cancer drug targets and
biomarkers within signalling networks. Therefore our GSA proce-
dure should be capable of answering biologically-relevant ques-
tions, namely, which components of signalling networks have the
dominant control over the value of key signal outputs, when the
majority of network parameters are uncertain. For this reason, in
our procedure we focussed on the analysis of a biologically-rele-
vant characteristic – the area under the time-course profile (Sy)
of the phosphorylated states of key signalling proteins (see Fig. 2,
inset), which can be computed as definite integrals of the corre-
sponding model species.

The use of such a characteristic has certain benefits. Firstly, the
characteristic conveys a sense of the total exposure of the cellular
microenvironment to the signal, represented by an activated
Fig. 2. Overview of method. Key stages of GSA applied to integrated model readouts. Inse
under the normalised time-course profile of phosphorylated protein Y in the absence or
signalling protein, over a given period of time, and therefore allows
us to study the overall effectiveness of signal processing at the le-
vel of each protein. Secondly, Sy of the key signalling components
can be directly related to the particular cellular response to stimu-
lation, such as proliferation or survival. For example, as shown in
(Asthagiri et al., 2000) the integrated ERK2 activity was propor-
tional to DNA synthesis, and therefore could be used as a quantita-
tive measure of cell proliferation. Finally, analysis of Sy allowed us
to overcome problems associated with individual variability of
time-course profiles, such as transient dips, peaks, possible oscilla-
tions, slower/faster kinetic profiles, etc. In our approach such vari-
ations do not contribute to the resulting sensitivity other than by
changing the overall area under the curve.

Similar attempts to use biologically meaningful characteristics
in GSA procedure have been presented in Yoon and Deisboeck
(2009) and Kim et al. (2010). Yoon et al. used MPSA to identify net-
work components controlling Erk responses to be either transient
or sustained. For this purpose, two characteristic measures were
introduced, the amplitude and the duration of the Erk signal, to
split all parameter sets into binary classes. In Kim et al. Sobol’s
t: Scheme explaining the characteristic used for sensitivity analysis. Sy and SInh
y – area

presence of the inhibitor Inh, Smax
y – theoretical maximal value of Sy.
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algorithm was applied to predict the parameters that control the
characteristic, related to the delay time to cell death – a biologi-
cally-relevant quantity, which was not a state variable of the
model.

In both studies application of GSA techniques provided a
valuable insight into the mechanism controlling input–output
behaviour of the networks, with potential to be used for identifica-
tion of biomarkers for pharmaceutical drug discovery processes.

2.3. GSA implementation: description of the algorithm

The flowchart of our GSA procedure is presented in Fig. 2. Fur-
ther we briefly outline key stages of the proposed GSA procedure
and illustrate how each of them was implemented for our test sys-
tem – ErbB2/3 network model.

Step 1: Definition of the inputs to the method
In our GSA implementation the inputs to the method include:
S.1.1. A kinetic model of a signalling pathway, calibrated on a set of

time-series data
Because of our specific interest in identification of anti-cancer

drug targets and the analysis of drug resistance, our version of
GSA uses as an input a kinetic model of a signalling pathway, cal-
ibrated on a particular set of time-series data. Any model cali-
brated in this way should contain a set of parameters, identified
from a fitting procedure, to achieve the best match between exper-
imental curves and relevant model trajectories. Suitable data rep-
resent time course profiles of phosphorylated proteins, registered
after stimulation of the signalling with relevant receptor ligands.
Our ErbB2/3 network model was calibrated on the set of time
course profiles of pErbB3, pErk and pAkt registered after stimula-
tion of PE04 cells with heregulin, in the presence and absence of
anti-ErbB2 inhibitor pertuzumab (see (Faratian et al., 2009b) and
Fig. S6 in Additional File 1).

Note that in general GSA does not require a calibrated model as
an input, but here calibration is needed to confirm the validity of
the model. However, full identifiability of the model is not
required.

S.1.2. Definition of a set of model parameters to perturb
Depending on the purpose of the analysis the set can include

either all system parameters or a particular sub-set.
In our analysis of the ErbB2/3 network we perturbed all model

parameters, including kinetic constants and total concentrations of
the signalling proteins, with exception of the parameters corre-
sponding to the concentration of external compounds, such as
receptor ligands (heregulin-b, (HRG)) and inhibitors (pertuzumab
(Per)), which were fixed at their values used in the experiments.

S.1.3. Definition of the parameter boundaries for GSA
Setting the boundaries of the parameter space for GSA for large

scale models represents a distinct task, as on the one hand, they
should be relatively wide to justify the globality of the analysis,
but on the other hand the boundaries should be reasonably narrow
due to the limitations imposed by the resulting computational
time and available CPU resources. Since our GSA implementation
is specifically directed towards identification of appropriate drug
targets and cancer-related biomarkers within signalling networks,
the parameter ranges should be able to incorporate potential ef-
fects of drugs and genetic modifications on the level of protein
activities. In our analysis we assumed that up to a 10-fold reduc-
tion in parameter value could imitate an efficient suppression of
the protein activity by an anti-cancer drug. It’s worth noting, that
it is difficult to predict the real extent of the inhibition of the pro-
tein activity by targeted drugs in vivo, since it depends on many
factors – drug transformations within the body, efficiency of drug
delivery to the target, etc. However, there is a good reason to be-
lieve that in vivo drugs cause not more than a 10-fold inhibition
of targeted protein activity. For example, in our experiments
pertuzumab caused up to 40% inhibition of ErbB3/2 dimer forma-
tion (Faratian et al., 2009b). Recent findings of Gaborit et al.
(2011) also confirmed that anti-ErbB2 drugs cause not more than
40–20% of reduction of ErbB2 heterodimerization, when used
alone, and up to 70%, when combined with an EGFR inhibitor.
These estimates have been made for drugs targeting cellular mem-
brane receptors. For intracellular targets the level of inhibition may
be even lower, due to additional factors, limiting drug availability
within the cell (e.g. due to inefficient drug transfer into the cell).

Similarly, we assumed that up to a 10-fold variation of parame-
ter value above and below its nominal value (that in total provides
effectively a 100-fold variation) could approximate modification of
protein activity by the majority of mutations. For example, a PIK3-
CA mutation is thought to increase PI3K activity only two-fold
(Carson et al., 2008), whereas lipid phosphatase activity of PTEN
can differ up to 100-fold between different PTEN mutants, as
assessed in (Rodriguez-Escudero et al., 2011). Importantly, in our
analysis the parameters are varied within the 10-fold range around
the nominal value, thus allowing us to consider many possible
levels of protein inhibition/activation, including both weak and
strong effects.

Thus, for our ErbB2/3 network model the constraints for the
majority of kinetic parameters were set to span one order of mag-
nitude above and below the values obtained in one of our best data
fits. In some cases the parameter ranges were adjusted to match
the order of magnitude of other existing estimates (see Additional
File 2 and Table S2). For most of proteins the total concentration
was varied between 10 and 1000 nM, since the majority of existing
estimates for components of ErbB network fall within this range
(Birtwistle et al., 2007; Hatakeyama et al., 2003; Kholodenko
et al., 1999; Klinke, 2010).

S.1.4. Definition of the model readouts subject to sensitivity analy-
sis. At this stage the model readouts for inclusion in the analysis
should be specified. In principal, GSA can be applied to any number
of model outputs or combination of them, but in practice it is sen-
sible to focus on the analysis of one or several most informative
model readouts.

For the ErbB2/3 network model we explored the output signal
from the PI3K/Akt branch of the network, focusing on the analysis
of the time course profile of phosphorylated Akt (pAkt), where
pAkt was defined as the composition of several model species, cor-
responding to different forms of phosphorylated Akt, normalised
by the total concentration of Akt protein:

pAkt ¼ ð½pAkt-PIP3� þ ½ppAkt-PIP3� þ ½pAkt-PIP3-PP2A�
þ ½ppAkt-PIP3-PP2A�Þ=Akt tot

S.1.5. Definition of the criteria to include/reject a parameter set
into/from the analysis. Quasi-random parameter sets sampled from
the parameter space correspond to a variety of system behaviours,
some of them potentially biologically implausible. Depending on
the purpose of the analysis, at this stage the criteria for classifying
parameter sets as plausible/implausible should be formulated. For
the ErbB2/3 network model, we included in the analysis only those
parameter sets, for which the phosphorylation level of Akt in the
absence of the drug exceeded 1% of the total Akt protein.

Step 2: Sampling N parameter sets from the hypercube
To sample the points from the hypercube defined by parameter

ranges we use Sobol’s LDS algorithm, which ensures that individual
parameter ranges are evenly covered (Joe and Kuo, 2003; Sobol,
1998), implementation taken from (http://people.sc.fsu.edu/~bur-
kardt/cpp_src/sobol/sobol.html).

The choice of the adequate sample size (N) depends on the
properties of the system. One way to estimate the optimal N is to
systematically increase the sample size and check, whether the
set of the most sensitive parameters keeps changing with the

http://people.sc.fsu.edu/~burkardt/cpp_src/sobol/sobol.html
http://people.sc.fsu.edu/~burkardt/cpp_src/sobol/sobol.html
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increase of N. When two consecutive experiments consistently
capture and rank a similar set of most important parameters, one
can conclude that there is no obvious advantage in further increas-
ing the sample size.

For our ErbB2/3 network model we used a quantitative metric
‘‘top-down coefficient of concordance’’ (TDCC) to assess the ade-
quacy of the sample size N, as suggested by Marino et al. (2008).
TDCC is a measure of correlation between parameter ranks found
in two consecutive sampling experiments, which is designed to
be more sensitive to agreement on the top rankings (Iman and
Conover, 1987). We calculated TDCC for sample size N = [5000,
10,000, 30,000, 40,000, 50,000, 80,000, 100,000, 120,000]. Starting
from N = 50,000 TDCC followed a saturation trend, reaching the va-
lue of 1 at N = 100,000 (see Supplementary Fig. S9 in Additional File
3). Thus we estimated 120,000 as a sufficient number of Sobol’s
points for our analysis.

Step 3: Simulating the system for each parameter set and
classifying solutions

S.3.1. Calculating integral metrics for sensitivity analysis
For each randomly selected parameter set (Sobol point) we run

a simulation of the model and then calculate the area under the
time course profiles of the model readouts of interest (see inset
to Fig. 2):

Sy ¼
Z T

0
yðtÞdt

where y ¼ pY
Y0

stands for the concentration of the phosphorylated
form pY of the protein Y (for instance, pErk, pAkt), normalised to
the total concentration of the given protein (Y0), T – time span for
integration.

In our further analysis we used a normalised dimensionless ver-
sion of this metric:

Sy;n ¼ Sy=Smax
y ;

where Smax
y is a theoretical maximal value of Sy, which could be

achieved if all the protein Y were phosphorylated in a sustained
manner. Thus Sy,n varies in the range from 0 to 1 and represents
the actual fraction of the potential maximal signal, produced by
protein Y. Therefore Sy,n can be interpreted as the relative effective-
ness of signal generation at a given signalling stage.

The choice of the adequate time span for integration T is dic-
tated by the characteristic time of system response to perturbation,
which should be experimentally confirmed. In our GSA implemen-
tation we set T in such a way to fully capture transient dynamics of
changes in protein phosphorylation observed in response to stim-
ulation of the signalling with receptor ligands. For the ErbB2/3 net-
work system our experiments confirmed that T = 60 min was a
sufficient period of time for the key signalling components (e.g.
pAkt, pErk) to fully develop the response to stimulation of the sig-
nalling with heregulin (see Additional File 1 and Fig. S6).

Thus, for the ErbB2/3 network model, for each parameter set we
ran two simulations imitating two typical settings used in the
experimental study: stimulation of ErbB2/3 signalling with hereg-
ulin-b (1) in the absence and (2) in the presence of anti-ErbB2
inhibitor, pertuzumab, and calculated the area under the 60 min
pAkt time course profile: SpAkt and SPer

pAkt . Both metrics were norma-
lised by Smax

pAkt .
S.3.2. Classifying calculated metrics Sy,n as acceptable/unacceptable

for further analysis
This has been done in accordance with selection criteria defined

at stage 1.5. Parameter sets for which SpAkt,n < 0.01 has been ex-
cluded from the analysis.

Step 4. Calculating sensitivity indices for key model readouts
To analyse the sensitivity of the integral characteristics Sy to the

variation of model parameters we use a variant of Partial Rank
Correlation Coefficient (PRCC) analysis (Saltelli, 2004; Zheng and
Rundell, 2006), implemented in R package ‘sensitivity’. The calcu-
lated PRCC sensitivity indices are a standardized sensitivity mea-
sure representing correlation between the value of model
readout Sy,n and model parameter Pj with removed influence of
the correlation of parameter of interest with other parameters.
To reduce the influence of nonlinearity, the correlation is calcu-
lated based upon ranks rather than absolute values.

PRCC between Pj and Sy,n was calculated as the correlation coef-

ficient rpjs between the two residuals pj ¼ P̂j � ~Pj and s ¼ Ŝy;n � ~Sy;n,

where P̂j and Ŝy;n are rank transformed Pj and Sy,n; ~Pj and ~Sy;n are
the linear regression models defined as follows (Marino et al.,
2008):

~Pj ¼ a0 þ
Xk

l¼1
l–j

alP̂l; ~Sy;n ¼ b0 þ
Xk

l¼1
l–j

blP̂l

Thus

rpjs ¼
PN

i¼1ðpij � �pÞðsi � �sÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðpij � �pÞ2

PN
i¼1ðsi � �sÞ2

q ;

where N is the number of Sobol’s points sampled from the model
parameter space; �p and �s are respective sample means.

Importantly, the sign of a PRCC indicates how the variation of
each parameter affects the output signal: the positive index corre-
sponds to the parameter whose higher value is likely to be associ-
ated with a higher value of the model output, and vice versa. The
value of PRCC indices are distributed between – 1 and 1 with 0
indicating an input to which the model output is completely
insensitive.

Thus, the output from our GSA procedure represents a matrix of
PRCC, which contains the quantitative metrics of how the variation
of each model parameter is correlated to the value of the inte-
grated model readouts (Sy,n) of interest. To facilitate the analysis
of the matrix, the results are visualised in the form of colour-coded
sensitivity profiles for individual model readouts Sy,n. For the
ErbB2/3 network model we generated the sensitivity profiles for
SpAkt and SPer

pAkt (see Fig. 3).

2.4. Applied aspects of the GSA method: interpretation of GSA profiles

The main goal of targeted anti-cancer treatments is to inhibit
particular components within signalling networks in order to sup-
press signal propagation through the particular branches that have
been recognised as implicated in cancer progression.

Our GSA methodology has been designed for identification of
the network parameters whose variation has the most impact on
the value of the key signalling network outputs. Therefore we pro-
pose, that it can be used for the prediction of potential drug targets
and biomarkers of cancer and drug resistance.

Such predictions can be derived from the analysis and compar-
ison of the sensitivity profiles of key model readouts in the absence
(Sy) and in the presence (SInh

y ) of the targeted drugs (inhibitors). In
particular, we assume that the Sy sensitivity profile can be used to
identify anti-cancer drug targets and biomarkers of susceptibility
to cancer, as it points to the parameters, variation of which is most
likely to be associated with the suppression or elevation of cancer-
related model outputs Sy. At the same time, the analysis of SInh

y may
help to predict potential biomarkers of drug resistance and gener-
ate ideas of suitable combination therapies, as it identifies the
parameters for which the model readout retains sensitivity after
the drug has been introduced. An illustration of practical applica-
tion of the method to the ErbB2/3 network model is given in
Section 3.



Fig. 3. GSA applied to the prediction of drug targets and biomarkers in ErbB2/3 network. The sensitivity spectrum of the integrated pAkt model readout to the simultaneous
perturbation of all kinetic parameters and total concentrations of proteins, in the absence (left) and presence (right) of pertuzumab. The 40 most sensitive parameters are
shown. The values of sensitivity coefficients are colour-coded according to the scale shown on the right. All sensitivity coefficients with absolute value greater than 0.05 are
significant at the confidence level of 95%. The full sensitivity spectrum for SpAkt and SPer

pAkt is presented in Additional File 3, Supplementary Fig. S10.
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2.5. Local sensitivity analysis

To create local sensitivity spectrum of our model parameters,
each nominal parameter Pi was incremented and decremented by
1% of its value (dpi) and the normalised sensitivity coefficient for
the area under the pAkt time course profile was calculated as fol-
lows (Zi et al., 2008):

CpAkt
i ¼

SpAkt ðPiþdPiÞ�SpAkt ðPi�dPiÞ
SpAkt ðPiÞ

2dPi
Pi
2.6. Computations

The construction and calibration of the ErbB2/3 model was car-
ried out with the use of the DBsolve package for kinetic modelling
(Gizzatkulov et al., 2010; Goryanin et al., 1999). All GSA-related
computations were run on Edinburgh University ECDF cluster: 10
nodes were used to run simulations of ODE system for 120,000 So-
bol’s points; 200 nodes were used to calculate PRCC indexes for
sensitivity analysis. Thus an average analysis took 20 h for model
simulation and two hours for sensitivity analysis. ODE system
was solved using CVODE solver from SUNDIALS package (Hind-
marsh et al., 2005), sensitivity analysis was performed with the
package ‘sensitivity’ (http://cran.r-project.org/web/packages/sen-
sitivity/index.html) in R environment (http://www.r-project.org/).

2.7. Experimental methods

2.7.1. Cell culture and treatment of cells
PE04 and OVCAR4 cells were grown as monolayer cultures in

RPMI supplemented with 10% heat-inactivated foetal calf serum
(FCS) and penicillin/streptomycin (100 IU/mL) in a humidified
atmosphere of 5% CO2 at 37 �C. Time course experiments were
set up by plating cells into 10 cm diameter petri dishes and leaving
for 24 h. Cells were then briefly washed in PBS before transferring
to phenol red-free DMEM containing 5% double charcoal-stripped
serum supplemented with penicillin/streptomycin (100 IU/mL)
and glutamine (0.3 mg/mL) for a further 48 h prior to treatment.
Cells were treated with UCN-01 (protein kinase inhibitor; Calbio-
chem #539644; final concentration of 1 lM), LY294002 (PI3 kinase
inhibitor; Calbiochem #440204; final concentration 20 lM),

http://cran.r-project.org/web/packages/sensitivity/index.html
http://cran.r-project.org/web/packages/sensitivity/index.html
http://www.r-project.org/
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Pertuzumab (ErbB2 inhibitor; final concentration 100 nM) and
stimulation by Heregulin (R&D Systems; 396-HB-CF) was at final
concentration of 1 nM. Cells were treated for 15 min with the
aforementioned drugs as appropriate immediately followed by
the addition of heregulin-b (1 nM). The concentrations of drugs
used in the experiments corresponded to the dose causing 50%
inhibition of cell growth.

2.7.2. Collection of lysates and western blot analysis
Samples were collected at time points of 1, 5, 30, and 60 min

after initiation of heregulin treatment, washed in PBS, and imme-
diately lysed in ice-cold isotonic lysis buffer [50 mM Tris–HCl
(pH 7.5), 5 mM EGTA (pH 8.5), 150 mM NaCl, 1% Triton X-100] sup-
plemented with aprotinin (10 lg/mL), phosphatase inhibitor cock-
tail A (Sigma, P2850), phosphatase inhibitor cocktail B (Sigma,
P5726) and a protease inhibitor cocktail (Roche, 11836153001). Ly-
sates were centrifuged for 6 min at 13,000g and protein concentra-
tions of supernatants subsequently determined using the BCA
assay (Sigma, BCA-1).

2.7.3. In cell western blotting
PE04 and OVCAR4 cells were plated out in black 96-well round

bottom trays and left for 24 h after which they were washed in PBS
and transferred to 5% double charcoal-stripped serum-containing
media as described above. Following drug treatment, media was
aspirated and cells were fixed in 100 ll of 4% formaldehyde for
15 min at room temperature before being washed three times in
PBS. Cells were permeabilized with 100 ll of ice-cold methanol
for 10 min at �20 �C and again washed in PBS. Staining was per-
formed by blocking for 60 min at room temperature (5% goat ser-
um/0.3% Triton X-100 in PBS) after which primary antibody
incubations (in 1% BSA/0.3% Triton X-100 in PBS) were carried
out overnight at 4 �C. Antibodies to pAKT (Cell Signalling; #9271
at 1:50) and total AKT (Cell Signalling; #2920 at 1:50, were opti-
mized for InCell western incubations. Secondary antibody detec-
tion was carried out as described for western blot analysis with
1:800 IRdye680 (for the normalizer) and 1:800 of IRdye800 (for the
target). Analysis was carried out after pAKT: tAKT normalisation.

2.7.4. Reverse phase protein arrays (RPPA)
Denatured and reduced protein lysates were spotted onto nitro-

cellulose-coated glass slides (Whatman, Stamford, ME) using a
MicroGrid II robotic spotter (DigiLab, Holliston, MA) as previously
described (Spurrier et al., 2008). Three replicates were spotted per
sample in five two-fold dilutions (resulting in a total of 15 spots
per sample). Slides were hydrated in Li-Cor blocking buffer for
1 h (LI-COR Biosciences, Nebraska, USA), and then incubated with
primary antibodies overnight at 4 �C in a sealed box containing a
damp paper towel. Antibodies to pAKT (Cell Signalling; #9271 at
1:50), and PP2A (Cell Signalling; #2259 at 1:50), were optimized
for RPPA incubations. Slides were stained using matched total
and phospho-proteins duplexed on each slide. The following day
slides were washed three times in PBS/0.1% Tween 20 (PBS-T) at
room temperature for 5 min before incubating with far-red fluo-
rescently-labelled secondary antibodies diluted in Li-Cor Blocking
Buffer (1:2000) at room temperature for 45 min with gentle shak-
ing. Slides were then washed in excess PBS/T (x3)/PBS (x3) and al-
lowed to air dry before reading on a Li-Cor Odyssey scanner at
680 nm and 780 nm. RPPA analysis was performed using MicroVi-
gene RPPA analysis module (VigeneTech, Carlisle, MA, USA). Spots
were quantified by accurate single segmentation, with actual spot
signal boundaries determined by the image analysis algorithm.
Each spot was quantified by measuring the total pixel intensity
of the area of each spot (volume of spot signal pixels), with back-
ground subtraction of 2 pixels around each individual spot. The
quantification y0 (intensity of curve) or rsu (relative concentration
value) of sample dilution curves were normalised using the corre-
sponding total protein.
3. Results and discussion

3.1. Testing the GSA procedure: application to ErbB2/3 network model

Though our GSA procedure is suitable for sensitivity analysis of
any number of model readouts, in this study, for demonstration
purposes, we focused on the analysis of a single output from the
ErbB2/3 model – the timecourse of Akt phosphorylation. This has
been done for a number of reasons. Firstly, the elevated pAkt sig-
nalling has been implicated as a major determinant of cancer
(Faratian et al., 2009b; Schoeberl et al., 2009); secondly, the level
of Akt phosphorylation has been indicated as the key responsive
element to anti-ErbB2 inhibitors and to the changes in ErbB2
expression (Birtwistle et al., 2007; Faratian et al., 2009b).

Below we present the results of the analysis of the SpAkt global
sensitivity profile in the presence and absence of ErbB2 inhibitor
pertuzumab, and demonstrate what useful information can be
drawn from the analysis.
3.1.1. Analysis of pAkt global sensitivity profile helps to identify
potential drug targets and biomarkers of susceptibility to cancer

The SpAkt sensitivity spectrum (Fig. 3, left column) can be inter-
preted in the following way: lower values of the parameters,
shown at the top of the spectrum, in general correspond to a lower
pAkt signal, while lower values of the parameters at the bottom of
the diagram are likely to result in a higher value of SpAkt, and vice
versa.

Thus the parameters at both poles of the spectrum would point
to the proteins whose activity, if dysregulated (via activating muta-
tions or activity loss), could result in elevated pAkt signalling.
Therefore these proteins could serve as biomarkers of dysregulated
PI3K/Akt signalling in cancer. The parameters from the upper part
of the spectrum would indicate promising drug targets, as their
lower values would correspond to lower SpAkt, and therefore target-
ing these proteins may be beneficial with respect to suppressing
pAkt.

In the absence of the drug (Fig. 3) the pAkt signal had most of its
sensitivity concentrated on the parameters related to the function
of the PI3K/PTEN/Akt signalling branch, whereas the sensitivity to
the majority of parameters of the MAPK branch was in a near zero
range. Similar lack of sensitivity of the pAkt signal to the parame-
ters of MAPK cascade has been previously reported in (Schoeberl
et al., 2009).

The highest sensitivity (positive correlation) of SpAkt was found
for the parameters describing the size of the phosphoinositol pool
(PI), the maximal rate of Akt phosphorylation by PDK1 (V40), and
several other parameters of PI3K/PTEN signalling cycle. The total
amount of PTEN and PP2A, as well as several parameters related
to their catalytic activity were negatively correlated with the value
of the pAkt signal.

Thus, our GSA procedure identified the phosphoinositol pool
(PI), PDK1 and PI3K as the most promising targets to suppress SpAkt.
At the same time, hyper-activation of PDK1 and/or PI3K, as well as
the loss of PTEN and/or PP2A activity, were highlighted as potential
biomarkers of Akt pathway dysregulation in cancer.

We next sought the confirmation of these predictions in exper-
iments and from the available literature. The direct manipulation
of PI pool is not advisable for drug therapy, due to intricate involve-
ment of multiple PI derivatives in many important physiological
processes, including contraction of cardiomyocytes. Instead, pool
of phosphoinositols can be targeted indirectly, via inhibiting the
proteins (e.g. PI3K), controlling the balance between various PI
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forms. Therefore we focused on testing the effect of PI3K and PDK1
inhibition on the level of Akt phosphorylation in two ovarian car-
cinoma cell lines, PE04 and OVCAR4. These two cell lines were cho-
sen for the following reasons: PE04 was used as a reference cell
line for initial model calibration; OVCAR4 was chosen because it
had an expression profile, in general, similar to PE04 for the key
Erk/Akt pathway proteins (ErbB1-3, PTEN, PI3K, Akt, Erk (see
Faratian et al., 2009b), but had a noticeably different response to
pertuzumab. For example, in growth inhibition studies OVCAR4
demonstrated a high level of resistance to pertuzumab, in contrast
to PE04, which was pertuzumab responsive. A low level of expres-
sion of ErbB1 receptors in both cell lines allowed us to assume that
the general structure of our ErbB2/3 network model was suitable
for describing HRG-induced signalling in both cell lines. The
observed discrepancy in the PE04 and OVCAR4 response to pert-
uzumab thus could be attributed to the differences in the corre-
sponding network parameters, that made OVCAR4 a suitable
candidate for testing the GSA predictions. Indeed, our GSA proce-
dure was designed to allow extension of the predictions generated
with the use of the model, calibrated for a particular cell line
(PE04), to other cell lines with the same network topology (in
our case OVCAR4), without the need to fit the model to any new
data sets.

We stimulated the PE04 and OVCAR4 cells with heregulin after
pre-treating them either with LY294002 (PI3K inhibitor) or UCN-
01 (PDK1 inhibitor). To compare the resulting inhibitory effect
with the efficiency of the existing drugs, we also measured the ef-
fect of pertuzumab on Akt phosphorylation, as this ErbB2 inhibitor
is currently in clinical trials for the therapy of breast and ovarian
cancer. Both tested compounds effectively inhibited the pAkt sig-
nal in both cell lines (Fig. 4), however the effect of UCN-01 was
more pronounced in the PE04 cell line, than in OVCAR4, which
may result from a higher Akt expression in OVCAR4 as compared
to PE04 (Faratian et al., 2009b). In both cell lines LY294002
Fig. 4. Testing GSA predictions of drug targets in ErbB2/3 network. Experimental confirm
lines: time course profile (left) and integrated pAkt response (right) to heregulin-b stim
normalised on the value of SpAkt observed in the absence of any inhibitors. The error-ba
demonstrated higher than pertuzumab potency in suppressing
the pAkt signal, whereas the effect of UCN-01 was comparable to
that of pertuzumab.

Our findings with regard to PI3K and PDK1 as potential drug
targets and biomarkers of cancer are consistent with other can-
cer-related studies (Iorns et al., 2009; Peifer and Alessi, 2009). Both
PDK1 and PI3K are currently attractive lead targets in clinical trials.
Overstimulation of PDK1 has been found in >50% of all human can-
cers (Peifer and Alessi, 2008), including ovarian cancer (Ahmed
et al., 2008). PI3K pathway activation is a frequent event in ovarian
cancer (Kan et al., 2010), and clinical trials are underway using
PI3K inhibitors (Coughlin et al., 2010).

Our theoretical findings with regard to PTEN and PP2A as poten-
tial biomarkers of elevated pAkt, are in agreement with current
understanding of their role in the onset and progression of cancer.
Mutations causing dysregulation of PTEN activity has been impli-
cated in a number of human cancers (Blanco-Aparicio et al.,
2007; Tamguney and Stokoe, 2007). The role of PP2A in controlling
the level of pAkt has been confirmed by Perrotti and Neviani
(2008), who observed that inhibition of PP2A was associated with
sustained phosphorylation of proteins, whereas re-activation of
PP2A led to cell growth suppression.

3.1.2. Analysis of the pAkt sensitivity profile after drug administration
allows identification of biomarkers of drug resistance and potential
combination therapy

One of the key assumptions underlying our approach is that the
introduction of a drug modifies the properties of the biochemical
network, including its sensitivity to parameter variation, and that
analysis of such modifications can help to tackle the mechanisms
of drug resistance.

Indeed, the sensitivity spectrum of the integrated pAkt signal
after pertuzumab administration (Fig. 3, right column), though
retaining most of the sensitivity found in the absence of the drug,
ation of drug targets, predicted by GSA, in PE04 (A and B) and OVCAR4 (C and D) cell
ulation ± pertuzumab (Per), LY294002 (LY) and UCN-01 (UCN). All integrals were

rs indicate 95% confidence intervals of technical replicates.



Fig. 5. Experimental testing of GSA-derived combination therapies. Integrated pAkt
response to heregulin-b stimulation in PE04 (left) and OVCAR4 (right) cell lines,
treated with combinations of pertuzumab, LY294002 (LY) and UCN-01 (UCN). The
data were normalised on the AUC of pAkt time-course in the absence of any drugs.
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exhibited a number of significant differences (see Additional File 3
for detailed analysis and discussion of changes). The additional
parameters for which pAkt acquired higher sensitivity in the pres-
ence of the drug were mainly related to the ‘‘upstream’’ component
of the signalling pathway, corresponding to signal propagation
through the level of receptors.

From the analysis of the SPer
pAkt sensitivity profile we identified

potential biomarkers of pertuzumab-resistance and targets for
combination therapy. In particular, the parameters negatively cor-
related with SPer

pAkt were considered biomarkers of pertuzumab resis-
tance, since lower values of these parameters, or loss of activity of
corresponding proteins, were associated with higher values of SPer

pAkt .
Conversely, the proteins whose activity was positively correlated
with SPer

pAkt were considered as potential targets for combination
therapy with pertuzumab.

Biomarkers of resistance to pertuzumab. The analysis of the SPer
pAkt

sensitivity profile confirmed our previous findings that the loss of
PTEN activity is a key biomarker of resistance to pertuzumab
(Faratian et al., 2009b). Indeed, compared to SpAkt, SPer

pAkt (Fig. 3)
remained sensitive to the level of PTEN, and acquired even higher
sensitivity to the parameters of the PTEN–phospho-PTEN turnover.
Other parameters negatively correlated to SPer

pAkt were related to
PP2A, indicating that loss of PP2A activity also may be considered
a biomarker of pertuzumab resistance. We tested this in a panel of
12 ovarian carcinoma cell lines (Faratian et al., 2009b), and the
quantitative expression of PP2A was positively correlated with
growth inhibition by pertuzumab (Spearman’s Rank Correlation
0.434; Supplementary Fig. S11 in Additional File 3). Similarly,
SPer

pAkt became more sensitive to the parameters controlling PI3K
activity, which is in agreement with experimental findings impli-
cating PI3K activation mutations in resistance to anti-ErbB drugs
(Blanco-Aparicio et al., 2007; Coughlin et al., 2010).

Predictions on drug combinations. The highest sensitivity of SPer
pAkt

was found for the total amount of ErbB3 and ErbB2, which con-
firms that expression level of these receptors plays a significant
role in modulating the response of the ErbB network to anti-ErbB2
inhibitors. In (Schoeberl et al., 2009) ErbB3 was identified as a key
node in controlling pAkt, which led directly to the design of a novel
anti-ErbB3 inhibitor MM-121. According to our analysis, simulta-
neous inhibition of both ErbB3 and ErbB2 by a combination of
drugs might result in a greater suppression of pAkt, as compared
to mono-therapy with an ErbB2 inhibitor (not tested).

Importantly, in the presence of the drug, SPer
pAkt retained relatively

high sensitivity to the parameters of PI3K and PDK1, which indi-
cates that the compounds, targeting these proteins, could be candi-
dates for combination therapy with pertuzumab. We tested this by
measuring the effect of LY294002 and UCN-01 combined with
pertuzumab in the PE04 and OVCAR4 cell lines. Both drug combi-
nations were effective, showing additional inhibition of pAkt as
compared to pertuzumab alone (Fig. 5).

3.2. Comparison with local sensitivity analysis (LSA)

The majority of existing cancer-related modelling studies em-
ploy local sensitivity analysis methods (LSA) to assess the impact
of single parametric perturbations on the model readouts of inter-
est. Based on this, conclusions are drawn on the potential inhibi-
tory or stimulatory effects of oncogenic mutations on the level of
the network output signals (Birtwistle et al., 2007; Chen et al.,
2009) and predictions of potential targets for anti-cancer therapies
are generated (Schoeberl et al., 2009). However, LSA has some seri-
ous limitations which should be taken into consideration when
interpreting local sensitivity metrics in terms related to drug dis-
covery. Firstly, in traditional LSA methods the parameters are var-
ied only in a localised region around the nominal parameter values,
and sensitivity metrics are derived under the assumption that
there is a linear relationship between input parameters and model
outputs. At the same time drug effects presume significant sup-
pression of the targeted protein activity, which can result in non-
linear system responses. Secondly, in LSA implementations only a
single parameter is perturbed at a time, while the rest of parame-
ters remain fixed at their values identified from the best fitting. In
cancer cells the network parameters may be subjected to signifi-
cant biological variation. These limitations, along with the poor
identifiability of the parameters in the large-scale network models,
raise questions about the possibility of extending LSA-derived con-
clusions to more general cases of highly variable networks and
large parametric perturbations.

In this context, GSA approach has important advantages. In-
deed, in contrast to LSA, GSA evaluates the effects of large-scale
parameter perturbation on model outputs, that allows imitation
of strong inhibitory or activation effects caused by modern tar-
geted therapeutics or oncogenic mutations. GSA is also more flex-
ible with regard to assumptions about the relationships between
input parameters and analysed model outputs. It can effectively
work either with no assumption about the nature of this relation-
ship (e.g. variance-based GSA methods) or with an assumption
about monotonicity of such dependence (e.g. PRCC, used in our
implementation). Moreover, random sampling of parameter space,
employed by GSA, may imitate biological variability of network
parameters in different cells and cell lines, caused by genetic vari-
ations and post-translational modifications. Importantly, our GSA
implementation can make use of poorly identifiable models, that,
in contrast to LSA, makes our method even less dependent on the
nominal parameter values, identified in fitting.

In this study we performed the comparison of LSA and GSA-de-
rived predictions, using our reference ErbB2/3 network model as a
test system. For this purpose we ran local sensitivity analysis of the
ErbB2/3 model in the proximity of the best solution, identified
from fitting. To make LSA results more comparable with GSA find-
ings, in our LSA implementation we used the same characteristic
(area under pAkt time course profile) for sensitivity analysis (see
Methods for details).

As can be seen from comparison of Fig. 3 and Fig. 6, most sensi-
tive parameters identified by LSA were also present in GSA-derived
sensitivity spectrum, but there were some noticeable discrepancies
in the rank of parameters obtained by local and global sensitivity
methods. Similarly to GSA, in the absence of pertuzumab, LSA indi-
cated highest sensitivity for the total amount of phosphoinositol
(PI) and PTEN. High sensitivity was also confirmed for the parame-
ters of PI3K/PTEN signalling cycle (k28, k31,k34, total PI3K). How-
ever, LSA indicated ErbB3 as one of the key parameters



Fig. 6. Local sensitivity analysis of ErbB2/3 network model. The sensitivity of the integrated pAkt time-course profile to the single-parametric perturbation of kinetic
parameters and total concentrations of proteins, calculated in the proximity to the reference solution for the absence (left) and presence (right) of pertuzumab (Per).
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controlling the level of pAkt phosphorylation, whereas in GSA
ErbB3 had a significantly lower rank. Moreover, while GSA pre-
dicted high sensitivity for the rate of Akt phosphorylation by
PDK1 (V40), in LSA V40 was positioned much lower in the spec-
trum. Interestingly, in Schoeberl et al. (2009) (Schoeberl et al.,
2009) LSA also revealed ErbB3 as the key node in controlling pAkt,
whereas, in contrast to our findings, the sensitivity for the parame-
ters of PI3K and PDK1 was found to be very low.

Similarly, commonalities and differences can be found in the
LSA and GSA profiles generated in the presence of pertuzumab
(Fig. 6, right column): LSA predicted the most sensitivity for the
parameters of PTEN-phospho-PTEN turnover (V35 and V_35),
while the sensitivity to total PTEN and PI3K dropped compared
to the ‘‘no pertuzumab’’ case. GSA, along with confirming PTEN
as a key node in the control of pAkt signal in the presence of pert-
uzumab, also predicted a noticeable increase in the sensitivity for
the parameters of the receptor module: total ErbB2,3, receptor–li-
gand and receptor–dimer complex formation. Both methods indi-
cated PDK1 as a sensitive node in the presence of pertuzumab.
GSA predicted higher sensitivity to PI3K than LSA.

To summarise, most of the parameters identified by LSA in this
study represented a subset of GSA derived predictions, but the LSA
ranking differed from the GSA ranking. Such differences in the
predictions provided by global and local sensitivity methods, as
well as the discrepancy between LSA findings presented in differ-
ent studies, in our opinion, should not be considered as contradic-
tory, because they originate from significantly different design and
purposes behind local and global types of analysis.

Indeed, LSA is normally performed in the proximity of the single
solution identified from the best fitting to a particular dataset,
therefore it would be logical to expect that it can help to identify
the proteins possessing the most control over the output signal
in the particular cell line used for model calibration. For example,
LSA of our ErbB2/3 network model could point to the best targets
to suppress the pAkt signal in the PE04 ovarian carcinoma cell line.
However, since the model is not fully identifiable, such predictions
may not be accurate. In contrast to LSA, GSA works not with a sin-
gle model solution, but with the whole ensemble of those, gener-
ated for N randomly sampled parameter sets. Therefore GSA
procedure is not intended to find the best targets for inhibition
in a particular cell type, but instead it identifies those proteins
whose parameters are highly correlated with the output signal of
interest in the majority of (but not all) possible network imple-
mentations, defined by possible combinations of network parame-
ters. Thus, the GSA of our ErbB2/3 network model points to the
proteins, targeting of which is likely to result in a lower pAkt signal
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in the majority of cells with the same network topology, while the
kinetic parameters of individual reactions may differ between the
cells or be uncertain.

Because of the differences in technical setup and applicability of
LSA and GSA techniques, we suggest that these methods should not
be opposed but rather considered as complementary approaches,
which, when used together, may allow exploration of a wider
range of promising targets and prioritisation for future study. In-
deed our GSA procedure predicted that PDK1 could be a promising
target to suppress pAkt. In contrast to that conclusion, LSA indi-
cated a very low level of sensitivity to PDK1, both in our study
and in Schoeberl et al. (2009) (Schoeberl et al., 2009). Experimental
testing of GSA prediction proved that inhibition of PDK1 resulted in
a significant suppression of pAkt signal in two cell lines, including
PE04, which was used for initial calibration of our model. In addi-
tion to this, GSA identified loss of PP2A activity as a potential bio-
marker of elevated pAkt, while in LSA the sensitivity of pAkt to
PP2A parameters was very low. Thus GSA helped to predict an
additional potential drug target (PDK1) and a putative biomarker
(PP2A), which have not been captured by LSA. At the same time,
in contrast to LSA findings, our GSA has not indicated ErbB3 as a
promising target in the absence of ErbB2 inhibitors, whereas tar-
geting ErbB3 was shown to effectively suppress pAkt signalling
in ADRr and OvCAR8 cancer cell lines (Schoeberl et al., 2009).
4. Conclusions

Systems biology is advancing only very slowly in actually mak-
ing a contribution to cancer research. There is a tension between
the individual variability and the uncertainty of the parameters
of biochemical networks involved in cancer onset and progression,
which hamper the translation of the results of network modelling
studies into anti-cancer drug development. Moreover, a potentially
significant level of network perturbations caused by anti-cancer
drugs or oncogenic mutations questions the applicability of local
sensitivity analysis for anti-cancer drug development, since LSA
works with small-scale parameter perturbations. This emphasises
the need for development of theoretical approaches and methods
capable of addressing the uncertainty of model parameters and
generating valid predictions about the behaviour of critical net-
work outputs under large-scale multi-parametric perturbations.

In this study we investigated and confirmed the value of global
sensitivity analysis as a powerful technique for the analysis of net-
work models with uncertain parameters, which shows good prom-
ise for practical applications in anti-cancer drug discovery. We
present a novel implementation of model-based GSA, intended
for identification of drug targets and biological markers within
cancer-related signalling networks. Our GSA procedure is based
on Sobol’s LDS sampling method and employs PRCC to perform
the sensitivity analysis. Importantly, in our procedure we focus
on the sensitivity analysis of a biologically meaningful characteris-
tic – the area under the time-course profile of phosphorylated pro-
teins, that allows us to assess the effect of multi-parametric
variations on the value of key cancer-related network outputs
(e.g. phosphorylated Akt). Since PRCC provides the sign for the sen-
sitivity indexes, our GSA implementation allows separation of
strong negative and positive effects of parametric variations, thus
facilitating interpretation of the resulting sensitivity profiles in
terms of inhibition or activation of corresponding protein activi-
ties. The applied aspects of the method are based on the analysis
and comparison of GSA profiles of cancer-related model outputs
in the absence and presence of the drug.

As an illustrative example, we applied our method to a modifi-
cation of our previously developed model of the ErbB2/3 signalling
network (Faratian et al., 2009b) with a view to predict potential
drug targets, drug combinations, and biomarkers of resistance to
the anti-ErbB2 inhibitor pertuzumab. Some of the key predictions
were tested experimentally in ovarian carcinoma cell lines. Our
GSA procedure indicated PDK1 and PI3K as promising targets to
suppress Akt phosphorylation, suggesting that the efficient sup-
pression of pAkt signal can be achieved both with single drugs (a
PDK1 or a PI3K inhibitor), and with combinations of each of these
compounds with anti-ErbB2 inhibitor pertuzumab. Our experi-
ments confirmed that both the PDK1 inhibitor UCN-01, and the
PI3K inhibitor LY294002, effectively inhibited pAkt signalling in
two different ovarian carcinoma cell lines, when used as single
drugs and in combination with pertuzumab. Our findings with re-
gard to potential biomarkers of pertuzumab resistance (PTEN,
PP2A, PI3K) were in agreement with our own data (Faratian
et al., 2009b; Goltsov et al., 2011) and other existing studies.

Importantly, many of the targets and biomarkers identified by
our GSA procedure have been previously highlighted in other
experimental and modelling studies, that can be considered as a
confirmation of the predictive capabilities of the method.

Since LSA method still remains the most popular way for deriv-
ing quantitative predictions from ODE-based models, in this contri-
bution we focussed on the discussion of our GSA procedure in
comparison with this popular technique. We argue that GSA can
substantially add value to the analysis of cancer-related network
models, since, in contrast to LSA, it can successfully deal with the
poor identifiability and uncertainty of the parameters associated
with such models.

The comparison of the GSA and LSA predictions, generated for
our reference ErbB2/3 network system, revealed that control
parameters, highlighted by LSA represented a subset of GSA-de-
rived predictions; importantly, these two methods assigned signif-
icantly different ranks to some of the key network parameters (e.g.
ErbB3, PDK1, PP2A). We suggest that the observed discrepancy in
LSA and GSA predictions may originate from substantial differences
in theoretical assumptions and technical implementation of these
methods, that define their range of applicability. LSA may be suit-
able to identify critical network components within particular cell
type, used for initial model calibration, whereas GSA can help to ex-
plore a wider range of possible targets, which are likely to be valid
for the majority (but not all) possible network implementations.

Though we have illustrated our GSA procedure on a single rela-
tively well known system of ErbB associated signalling, we suggest
that the proposed method may have broader applicability, since the
general pipeline of our procedure is based on well-established and
tested statistical and computational techniques. However, for the
method to produce meaningful results, the input network model
should satisfy certain criteria. Firstly, since our method works with
integrated model trajectories, the model should be calibrated on a
suitable perturbation time-course data and match experimentally
observed system responses to stimulation, such as changes in pro-
tein phosphorylation after addition of receptor ligands. Secondly,
because of the choice of PRCC analysis as the core method of sensi-
tivity analysis, our current GSA implementation presumes monoto-
nicity of relationship between model parameters and analysed
network outputs. Therefore, prior to analysis, the tests should be
made, whether such an assumption can be justified (e.g. via visual
evaluation of relevant scatterplots). If the monotonicity of input–
output relationship cannot be assumed, the GSA procedure would
require further adjustments, including replacement of PRCC analy-
sis with a more appropriate method of SA (e.g. MPSA).
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