4 research outputs found

    In situ biosynthesis of bacterial nanocellulose-CaCO3 hybrid bionanocomposite: one-step process

    Get PDF
    In this work, a simple and green route to the synthesis of the bacterial nanocellulose-calcium carbonate (BNC/CaCO3) hybrid bionanocomposites using one-step in situ biosynthesis was studied. The CaCO3 was incorporated in the bacterial nanocellulose structure during the cellulose biosynthesis by Gluconacetobacter xylinus PTCC 1734 bacteria. Hestrin-Schramm (HS) and Zhou (Z) culture media were used to the hybrid bionanocomposites production and the effect of ethanol addition was investigated. Attenuated total reflection Fourier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, inverse gas chromatography and thermogravimetric analysis were used to characterize the samples. The experimental results demonstrated that the ethanol and culture medium play an important role in the BNC/CaCO3 hybrid bionanocomposites production, structure and properties. The BNC/CaCO3 biosynthesized in Z culture medium revealed higher O/C ratio and amphoteric surface character, which justify the highest CaCO3 content incorporation. The CaCO3 was incorporated into the cellulosic matrix decreasing the bacterial nanocellulose crystallinity. This work reveals the high potential of in situ biosynthesis of BNC/CaCO3 hybrid bionanocomposites and opens a new way to the high value-added applications of bacterial nanocellulose.info:eu-repo/semantics/publishedVersio

    Conductive bacterial cellulose-polyaniline blends: Influence of the matrix and synthesis conditions

    Get PDF
    Bacterial cellulose/polyaniline (BC/PANi) blends present a great potential for several applications. The current study evaluates the impact of using different BC matrixes (drained, freeze-dried and regenerated) and different synthesis conditions (in situ and ex situ) to improve the inherent properties of BC, which were monitored through FTIR-ATR, EDX, XRD, SEM, AFM, swelling, contact angle measurement and IGC. The employment of in situ polymerization onto drained BC presented the most conductive membrane (1.4 × 10-1 S/cm). The crystallinity, swelling capacity, surface energy and acid/base behavior of the BC membranes is substantially modified upon PANi incorporation, being dependent on the BC matrix used, being the freeze-dried BC blends the ones with highest crystallinity (up to 54%), swelling capacity (up to 414%) and surface energy (up to 75.0 mJ/m2). Hence, this work evidenced that the final properties of the BC/PANi blends are greatly influenced by both the BC matrixes and synthesis methods employed.info:eu-repo/semantics/publishedVersio

    Poly(glycidyl methacrylate)/bacterial cellulose nanocomposites: preparation, characterization and post-modification

    Get PDF
    Nanocomposites composed of poly(glycidyl methacrylate) (PGMA) and bacterial cellulose (BC) were prepared by the in-situ free radical polymerization of glycidyl methacrylate (GMA) inside the BC network. The resulting nanocomposites were characterized in terms of structure, morphology, water-uptake capacity, thermal stability and viscoelastic properties. The three-dimensional structure of BC endowed the nanocomposites with good thermal stability (up to 270 °C) and viscoelastic properties (minimum storage modulus = 80 MPa at 200 °C). In addition, the water-uptake and crystallinity decreased with the increasing content of the hydrophobic and amorphous PGMA matrix. These nanocomposites were then submitted to post-modification via acid-catalysed hydrolysis to convert the hydrophobic PGMA into the hydrophilic poly(glyceryl methacrylate) (PGOHMA) counterpart, which increased the hydrophilicity of the nanocomposites and consequently improved their water-uptake capacity. Besides, the post-modified nanocomposites maintained a good thermal stability (up to 250 °C), viscoelastic properties (minimum storage modulus = 171 MPa at 200 °C) and porous structure. In view of these results, the PGMA/BC nanocomposites can be used as functional hydrophobic nanocomposites for post-modification reactions, whereas the PGOHMA/BC nanocomposites might have potential for biomedical applications requiring hydrophilic, swellable and biocompatible materials.info:eu-repo/semantics/publishedVersio
    corecore