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ARTICLE INFO ABSTRACT

Keywords: Bacterial cellulose/polyaniline (BC/PANi) blends present a great potential for several applications. The current
Bacterial cellulose study evaluates the impact of using different BC matrixes (drained, freeze-dried and regenerated) and different
Polyaniline synthesis conditions (in situ and ex situ) to improve the inherent properties of BC, which were monitored through

Blend membrane

FTIR-ATR, EDX, XRD, SEM, AFM, swelling, contact angle measurement and IGC. The employment of in situ
Inverse gas chromatography

polymerization onto drained BC presented the most conductive membrane (1.4 x 10~ " S/cm). The crystallinity,
swelling capacity, surface energy and acid/base behavior of the BC membranes is substantially modified upon
PANi incorporation, being dependent on the BC matrix used, being the freeze-dried BC blends the ones with
highest crystallinity (up to 54%), swelling capacity (up to 414%) and surface energy (up to 75.0 mJ/m?). Hence,
this work evidenced that the final properties of the BC/PANi blends are greatly influenced by both the BC

matrixes and synthesis methods employed.

1. Introduction

Intrinsically conductive polymers (ICP) are a special type of poly-
mers that are characterized by a conjugated n-electron backbone which
confers the unusual property to conduct electricity (Catedral, Tapia, &
Sarmago, 2004). Among the different ICP, polyaniline (PANi) is well
known for its environmental stability as well as ease of synthesis. This
way, it presents a great potential to be applied as thin film transistors,
supercapacitors, engineering scaffolds, implantable biosensors and im-
plantable neural prosthetic devices (Kaur, Adhikari, Cass, Bown, &
Gunatillake, 2015; Sapurina & Shishov, 2012). Although, the applica-
tion of this polymer is restricted due to its poor mechanical properties.
This way, in the recent years, considerable work has been done re-
garding ways to improve the processing properties of PANi through the
production of blends with natural polymers. Amongst the different
matrixes used on PANi synthesis, natural fibers such as bacterial cel-
lulose presented to be promising since the current environmental issues
shows a pressing need for sustainable, degradable and recyclable ma-
terials while performing at the same level as non-degradable materials.

Bacterial cellulose (BC) is the purest form of cellulose found in
nature, where it does not present neither hemicelluloses nor lignin like
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plant cellulose. Due to the small fiber diameter of BC, the overall ma-
terial presents high surface area and high porosity (Chawla, Bajaj,
Survase, & Singhal, 2009). It also possesses a high thermal stability and
biocompatibility (Wang, Huang, Sheng, Lai, & Xi, 2015). Moreover, BC
can also incorporate polymerizable monomers into its network, occu-
pying its void volume and interacting with the BC fiber chains. Re-
searchers exploit this property in order to change and/or improve the
characteristics of BC such as its hydrophobicity, electrical conductivity,
surface reactivity, mechanical and thermal resistance, among others
(Shi et al., 2011). Recently, several studies have been employed into
improving the mechanical, thermal and electrical properties of cellulose
using Silica and polyvinyl alcohol (Poyraz, Tozluoglu, Candan, &
Demir, 2017; Poyraz, Tozluoglu, Candan, Demir, & Yavuz, 2017;
Tozluoglu, Poyraz, Candan, Yavuz, & Arslan, 2017). With the produc-
tion of bio-based products and the improvement of the initial properties
of cellulose, these works show the potential application of these new
materials to be implemented in different industrial sectors.
Conductive bacterial cellulose/polyaniline (BC/PANi) blends have
been receiving increasing attention from the scientific community not
only for electronic applications but also for the development of novel
electro-responsive drug delivery mechanisms. To improve the electrical
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properties of BC/PANi blends, Wang et al. (2012) have investigated the
influence of the pH media, temperature, reaction time and molar ratios
of the chemical components in the reaction while Catedral et al. (2004)
and Liu, Tzou, and Gregory (1994) evaluated different types of protonic
acids. Furthermore, with the same purpose of improving the electrical
conductivity of these membranes, the incorporation of other elements
into the reaction, such as carbon nanotubes and magnetite particles
have been employed (Jasim, Shi, Lin, & Yang, 2017; Park, Cheng, Choi,
Kim, & Hyun, 2013).

However, despite these recent advances, the impact of the BC matrix
and chemical polymerization type (in situ and ex situ) into the electrical,
structural and surface properties have not been studied. Thus, the
current works aims to employ different BC matrixes (drained, freeze-
dried and regenerated), as well as different polymerization methods (in
situ and ex situ polymerization) to improve the initial properties of BC.
The modifications made onto the initial BC matrixes will be monitored
through FTIR-ATR, SEM-EDX, XRD, AFM, swelling, contact angle,
electrical conductivity and IGC.

2. Materials and methods
2.1. BC production

Gluconacetobacter sp. was statically cultivated in Hestrin and
Schramm (HS) medium (previously autoclaved during 15 min at 121 °C)
to meet the bacteria cellular requirements for cellulose production.
After being incubated for 7 days at 30 °C, the membrane was removed
and washed with NaOH 0.5 M, at 80 °C during 2 h, and then neutralized
with distilled water. The membrane was stored at 5 °C until further use.

2.2. BC matrix

Different BC matrixes were used for the synthesis of the BC/PANi
membranes, which comprised in the use of drained, freeze-dried and
regenerated BC. Oven dried BC (OD-BC) was obtained by placing a wet
BC membrane on the oven at 40 °C. Drained BC was obtained through
manual pressing, removing up to 90% of water, while freeze-dried BC
(FD-BC) was obtained by freezing at — 20 °C during 30 min, followed by
freeze-drying.

To obtain a regenerated BC (R-BC), a wet membrane was dried on
the oven at 40 °C, cut into small pieces and a certain amount of BC was
added to a solution of LiCl 8% (w/v) in dimethylacetamide, obtaining a
BC concentration of 0.5% (w/v). Then, the mixture was placed in an oil
bath at 110 °C during 1 h followed by an ultrasonic bath during 1h at
room temperature (Ultrasons-H, Selecta). The mixture was left under
moderate stirring overnight, obtaining a clear viscous solution.

The regeneration process was employed by adding water in the
dissolved BC solution, leaving under slow stirring (< 100 rpm) during
1h to gain some firmness. Afterwards, the samples were washed
through dialysis during 72 h using a dialysis tubing (benzoylated) with
a molecular weight cut-off of 2000 Da (Sigma Aldrich) and then oven
dried at 40 °C.

2.3. PANi synthesis conditions

All polymerization reactions occurred under 24h and under low
stirring (< 100 rpm). The membranes were washed thoroughly until no
aggregates could be observed. Then, the resulting blends were oven
dried at 40 °C. A BC:ANi mass ratio of 0.10, as well as a Ani:HCL:APS
molar ratio of 1:1.2:1 was employed, following the optimal conditions
reported by Wang et al. (2012). The reactions occurred under an inert
atmosphere (N5) and both monomer and persulfate aqueous solutions
were dissolved in the presence of HCl (Riedel-de Haen).

The determination of the polymer content in the membranes was
determined through the Eq. (1), where wesmposie COrresponds to the
dried weight of the blend and wgc corresponds to the dry weight of BC
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used for the BC/PANi synthesis.

Polymer content = (Wplend —Wac/Whlend) X 100

@

2.4. Preparation of the BC/PANi membranes

Different methods were used to obtain different BCANi membranes,
using different BC matrixes (drained, freeze-dried and regenerated) as
well as the different polymerization methods (in situ and ex situ).

The first set of BC/PANi blends was obtained by using a BC mem-
brane (either drained (D-) or freeze dried (FD-)), and letting stand
during 1 h with an aniline solution in order to incorporate the monomer
prior to the addition of the oxidizing agent (ammonium persulfate
(APS, Sigma Aldrich)). This way, it is expected that the polymerization
of aniline occurs inside of the membranes, being considered an in situ
polymerization. This way, the BC/PANi blends obtained were named D-
IS and FD-IS, being the prefix the BC used (drained or freeze-dried) and
the suffix (IS) the type of polymerization used (in sitw).

Likewise, the second set of BC/PANi blends obtained comprised in
the use of a BC membrane (drained or freeze-dried) but this time aniline
and APS were added at the same time. This way it is expected that the
polymerization reaction would occur outside of the membrane and
thus, being considered ex situ polymerization. The second set of BC/
PANi blends nomenclature followed the same pattern, being named
accordingly D-ES and FD-ES, where the prefix refers the type of BC used
(drained or freeze-dried) and the suffix (IS) to the type of polymeriza-
tion used (ex sitw).

Then, the third set consists in the in situ polymerization of aniline in
the presence of dissolved BC. Pure aniline was added into dissolved BC
(see Section 2.2), letting under low stirring (< 100 rpm) during 4 h in
order for full homogenization. Then, it was added of the oxidizing agent
(APS), which not only made aniline polymerize but also made BC to
regenerate. This way, a 2-in-1 step method was employed, regenerating
BC at the same time of PANi synthesis. Following the same nomen-
clature as the other samples, this membrane was called R-IS, being the
prefix (R-) a reference to the BC present (regenerated BC) and the suffix
(IS) a reference to the polymerization method employed (in sitw).

2.5. Fourier transformed infrared spectrometer coupled to attenuated total
reflectance (FTIR-ATR)

FTIR-ATR spectra of the samples were obtained with a Perkin Elmer
Spectrum Two coupled with a Diamond ATR accessory (DurasamplIR II,
Smiths Detection, UK). 32 scans were acquired in the range of

4000-650 cm ~ !, with a wavenumber resolution of 4 cm ™ 1.

2.6. Scanning electronic microscopy coupled with energy dispersive X-ray
spectroscopy (SEM-EDX)

The samples were mounted and gold-coated in preparation for the
SEM-EDX imaging analysis, performed using a scanning electron mi-
croscope SU3500. SEM images were obtained using a magnification of
3000 x . The EDX analysis was performed under an accelerated voltage
of 5kV, with the aim to identify the chemical compositions of samples
at the surface, determining the weight percentages (wt.%) of elements
C, O, N, S and CI.

2.7. X-ray diffraction (XRD)

XRD measurements were carried out with a Phillips X’pert MPD
diffractometer using Cu Ka radiation (A of 1.54 10\) operating at 45 kV
and 40 mA. The 20 range under analysis was of 5-60°. The crystallinity
index (CI) of the samples was determined through Segal, Creely, Martin,
and Conrad (1959) method, according to the eq. (2) where I, corre-
sponds to the intensities of the amorphous region (18.0° and 13.8° for
type I and type II cellulose, respectively) and I;;o correspond to the
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intensity at the (110) plane (22.7° and 21.0° for type I and type II
cellulose, respectively).

CI = (1~Ion/T0) X 100 @

2.8. Atomic force microscopy (AFM)

To evaluate the surface topography of the samples, the AFM analysis
was employed by an atomic force microscope (AFM, Solver PRO, NT-
MDT, Russia) in tapping mode in air atmosphere. Samples were
scanned with the standard Si (silicon) cantilever with a force constant
of 22N/m and at a resonance frequency of 325kHz (tip radius was
10 nm and the tip length was 95 um), using a scan rate of 1.3 Hz. The
surface roughness (R;) was measured from representative images at
5 x 5 um? area, which corresponds to the average value of the surface
height.

2.9. Swelling capacity

Swelling studies were performed according to Figueiredo et al.
(2013) in order to evaluate the rehydration ability of the obtained
membranes. This procedure comprises in the monitorization of the
membrane’s weight increase in distilled water, at room temperature,
during 48 h. The samples were removed from the water and their sur-
faces were carefully wiped with dry filter paper for weight purposes.
The swelling ratio (SW) was then determined from Eq. (3), where W;
and W, are the weight of the swollen and dried membrane respectively.

SW (%) = (W= Wa/Wy) X 100 ®3)

2.10. Contact angle measurement

A water droplet was aliquoted onto each membrane and the contact
angle measurement was recorded with Kriiss DSA-100 contact angle
analyser at, by using on average 10 L of ultrapure water. The image
was processed with the software imageJ using the plug—in drop_analysis,
using the low-bond axisymmetric drop shape analysis approach
((LB-ASDA)) developed by Stalder, Kulik, Sage, Barbieri, and Hoffmann
(2006).

2.11. Electrical conductivity measurement

The BC/PANi blend conductivity measurements were made at room
temperature using the 4-probe technique (Panta & Subedi, 2012). The
system was comprised by a Fluke 87 RMS multimeter (to measure the
current), a Leader multimeter 856G (to measure the voltage) and a CV
regulated power supply Lab 502. Since the sample thickness (t, pm) is
lower than the probe spacing (S, pm), the conductivity (o, S/cm) was
measured according to the Eq. (4) where V is the voltage and I (A) the
current intensity.

o= nQ)/xt) x I/V) @

2.12. Inverse gas chromatography (IGC)

IGC measurements were carried out on a commercial inverse gas
chromatograph (Surface Measure Systems London, UK), equipped with
both FID and TCD detector. The system was automatized with the
Software SMS IGC Controller v1.8. Silanized glass columns with 3 mm
inner diameter and 300 mm length were used (dimethyldichlorosilane,
Repelcote BDH, UK), packing the sample through vertical tapping. The
samples were conditioned overnight followed by 2h at temperature
measurement to stabilize.

Dispersive surface energy measurements were carried using a series
of n-alkanes, from octane to undecane. For specific surface energy
measurements, tetrahydrofuran, dichloromethane, ethyl acetate,
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acetonitrile and ethanol were used. In all current analyses, a con-
centration of 0.2 p/po was employed as well carried with a flow rate of
10 mL/min at 25°C for the BC matrixes, 40-55°C for the BC/PANi
blends and at 70-85 °C for PANi sample. The higher temperatures ap-
plied for the blends and PANi powder is due to the strong interactions of
the probes with the samples.

The probes were supplied by Sigma Aldrich, with analytic grade
(> 99%). Methane was used as an inert reference gas and Helium was
used as the carrier gas, both supplied by Air Liquide Company, with a
purity above 99%. The physical constants used in IGC and the equations
used are described in Cordeiro, Gouveia, Moraes, and Amico (2011).

2.13. Statistical analysis

The statistical analysis of the data was carried using the IBM SPSS
Statistics 23 software. Differences in the measurements of a given
parameter were assessed by one-way analysis of variance (ANOVA),
followed by a Tukey’s post hoc analysis. For IGC, the error of the
measurements was of 3% and as such the upper and lower values from
the experimental value were determined. p-values of < 0.05 were
considered statistically different.

3. Results and discussion

3.1. Fourier transformed infrared spectrometer coupled to attenuated total
reflectance (FTIR-ATR)

FTIR-ATR was employed to study the influence of the BC matrix
processing methods as well the polymerization effect onto the func-
tional groups onto BC. In Fig. 1A, it is possible to observe that all BC
samples have the characteristic peaks of cellulose membranes: the
peaks obtained at 1632 and 666 cm ™!, correspond to the O-H bending
and out of plane bending respectively; the peaks obtained at 1434,
1373, 1312 and 1051 cm™! correspond to the CH and CH, bond
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Fig. 1. FTIR-ATR spectra of the (A) BC matrixes and (B) PANi polymer and BC/PANi
blends.
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Fig. 2. Schematic representation of the PANi interaction with BC and respective functional groups.

vibrations and the peak at 1162 cm ™! corresponds to the stretching of
ether groups (C-O-C), which can be found within the glucopyranose
ring and between the glucose monomers (Fan, Dai, & Huang, 2012).
FTIR-ATR suggests that no changes occurred in the BC matrix func-
tional groups composition through the employment of the different
processing methods. However, the FTIR-ATR of R-BC predicted changes
in the morphology of the cellulosic matrix.

The polymerization of aniline onto BC network was confirmed
through the comparison of both PANi and BC/PANi blends spectra
(Fig. 1B) with the respective BC matrixes. PANi presents characteristic
peaks at 1557 and 1128 cm ™!, corresponding to the stretching of the
C-N of benzenoid ring and peaks at 1483 cm ™!, which correspond to
the stretching of C = N of the quinoid ring (Zhang, Zhang, Wang, &
Piao, 2013). Also, the peaks at 1290 and 1235 cm ~! correspond to the
stretching vibrations of C-N from secondary aromatic amines and
C-N." in the polaron lattice of PANi, respectively (Trchova & Stejskal,
2011). The peak at 788 cm ™! is related to the 1,4-disubstitution of the
aromatic ring (Langer, 1990), which agrees with the chemical structure
of PANi (Fig. 2). All the blends spectra present these characteristic
peaks. Thus, FTIR-ATR indicates that both in situ and ex situ poly-
merization methods incorporated PANi in the different BC matrixes,
resulting in the successful synthesis of BC/PANi blends.

3.2. Electron dispersive X-ray spectroscopy (EDX)

EDX was employed to evaluate the elemental composition at the
samples surface. The BC matrixes, prior to modification, presented only
the elements C and O (Table 1). The proportions of these two elements
in the different BC matrixes indicates that it occurred changes in the
surface group orientation with the use of different processing methods

Table 1
Elemental composition of the BC matrixes and BC/PANi blends.

Sample Elemental composition (%)
C (6] N S Cl

OD-BC 52.0 48.0 nd. n.d. nd.
FD-BC 59.4 40.6 n.d. n.d. nd.
R-BC 48.0 52.0 n.d. n.d. n.d.
D-IS 71.1 14.2 10.7 4.0 n.d.
FD-IS 70.8 16.9 10.9 1.4 n.d.
RIS 69.5 12.9 8.9 35 5.3
D-ES 68.5 14.8 7.9 8.1 0.7
FD-ES 73.2 12.0 12.3 2.2 0.3
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onto BC.

With the incorporation of PANi, the surface evidences the presence
of N, along with an increase in the C due to the aromatic ring of PANi
and a consequent decrease on the amount of O. Different amounts of C,
N and O in the BC/PANi blends predict differences in PANi in-
corporation into BC. Moreover, the element S can be found on the
blends due to the persulfate used during the PANi synthesis, which is
converted into sulphate and might establish ionic interactions with the
amine groups (Shi et al., 2011). The presence of Cl in R-IS (5.3%) can
indicate that Cl is retained in the cellulose chains. This way, EDX fur-
ther corroborates with FTIR-ATR that the BC/PANi blends were suc-
cessfully synthesized and show that the BC matrix and polymerization
methods affect the surface elemental composition, derived from the
different PANi arrangements.

3.3. X-ray dispersive spectroscopy (XRD)

The morphological changes on BC with the different processing
methods as well as with PANi incorporation were studied through XRD.
Observing Fig. 3A, both OD-BC and FD-BC present a XRD profile of
cellulose type I, with characteristic peaks found at 14.5°, 16.73° and
22.7°, corresponding to the (100), (010) and (110) planes, respectively
(Poletto, Pistor, & Zattera, 2013; Yudianti et al., 2016). In case of R-BC,
the peaks corresponding to the (110) and (002) are now found at 11.9°
and 21.0° respectively (Lima, Dierakowski, Tischer, & Tischer, 2009;
Liu et al., 2011; Zhang et al., 2016). The peak broadening on XRD also
indicates a lower crystallite size (1.14 nm), in comparison to both OD-
BC and FD-BC (4.80 and 4.73 nm respectively) due to the amorphous
content interference (Zugenmaier, 2008).

OD-BC presented a CI of 79.2%, similar to FD-BC, indicating that the
same BC crystallinity is obtained by using both of drying methods.
These crystallinity values are comparable to previous studies on BC
(Mohammadkazemi, Faria, & Cordeiro, 2016; Tsouko et al., 2015;
Yudianti et al., 2016) . However, R-BC presents a significant lower CI
(39.8%) which can be attributed to the rearrangement of the BC chains
during the regeneration process, leading into a higher amorphous
content (Liu et al., 2011). Thus, XRD indicates that the BC matrix
processing methods affect the crystallinity of the resulting BC.

With PANi incorporation into BC lower crystallinity indexes were
obtained due to the presence of PANi which breaks the bonds between
BC chains, as seen in Fig. 3B. Minor differences in the BC crystallinity of
the blends are observed upon the different polymerization methods
used (up to 14%). On the other hand, the crystallinity was greatly in-
fluenced by the BC matrix used on the polymerization process (Fig. 3B).
The crystallinity of BC in the drained BC blends greatly reduces (about
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Fig. 3. XRD profile and crystallinity indexes of the (A) BC matrixes and (B) BC/PANi
blends.

60%), whereas for the freeze-dried BC blends it decreases moderately
(around 30%) in comparison to the corresponding BC matrix. For R-IS,
the BC crystallinity is similar to R-BC. This way, XRD shows that the BC
matrix have a greater influence in the crystallinity of the blend when
compared to the polymerization process.

3.4. Scanning electronic microscopy (SEM) and atomic force microscopy
(AFM)

SEM and AFM were carried out in the current study with the aim to
observe the influence of the BC matrix processing methods as well as
the PANi incorporation into the morphology of the BC matrixes. OD-BC
presents entangled fibrils (Fig. 4), which is further evidenced in FD-BC,
due to the preservation of its 3D structure. Also, it can be observed that
OD-BC is less porous than FD-BC. This can be due to the collapse of the
pores during oven drying. In case of R-BC, a smooth and compact
surface is observed, with an absence of fibrils at the surface. The
compact surface of R-BC is formed by the regeneration process, with a
fast chain aggregation which unables the creation of an organized
structure. Therefore, an amorphous and compact BC is formed. This
way, SEM shows that the different BC matrix processing methods
greatly influence the BC matrix morphology.

The presence of PANi can be seen at the surface by the SEM mi-
crographs (Fig. 4). Both drained BC blends (D-IS and D-ES) present fi-
bers with a higher width when compared to OD-BC. In case of both
freeze-dried BC blends (FD-IS and FD-ES), the incorporation of PANi is
slightly different, being observed flakes/granules, and nearly absence of
fibers at the surface. On R-IS, the surface became much rougher. Fur-
thermore, in all blends, a more compact surface is observed, indicating
the pore obstruction of the BC matrixes by PANi incorporation. Thus,
the SEM micrographs shows changes in the PANi incorporation, ac-
cording to the BC matrix employed.

The surface morphology was further explored by AFM where
smooth surfaces for the BC matrixes are observed. Differences in the R,
values are obtained (Fig. 5), which further corroborates that the BC
matrix processing methods influenced in the morphology of BC, as seen
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by SEM. With PANi incorporation, an increase in the surface roughness
is observed. No significant differences are observed between in situ and
ex situ polymerization (up to 4%). However, when using different BC
matrixes, different surface roughness values are obtained. It is seen that
using drained BC results in a rougher BC/PANi blend in comparison to
freeze-dried BC (up to 14.4%). In case of R-IS, it presented the greatest
increase in the surface roughness in comparison to the remaining blends
(68.5%). Likewise, the AFM results suggests that the PANi incorpora-
tion is influenced by the BC matrix used.

3.5. Swelling and contact angle analysis

It is known that the hydrophilic nature and water retention capacity
of BC is positively affected by the fibril arrangement and high surface
area per unit mass (Ul-Islam, Khan, & Park, 2012). Hence, swelling
studies were performed to study the effect of the BC matrix processing
methods as well as the effect of the BC matrix and polymerization
methods onto the water retention capacity of the different blends. OD-
BC presents a SW,q, of 504% (Fig. 6) while for FD-BC, the rehydration
ability is far superior (up to 9 times). This can be due to the BC pore
preservation during the freeze-drying process. In case of the R-BC, a
much lower SW,,,, was observed (50%), evidencing the reduced re-
absorption ability due to the compact structure. Thus, the different
processing techniques altered the BC pore availability and subsequently
SWiax being the freeze-drying method the most suited method to ob-
tain a highly porous BC membrane with a higher water retention.

With PANi incorporation, a significant decrease in the SW,,,, was
observed (Fig. 6), which can be due to the obstruction of pores by PANi,
as well as due to its hydrophobic nature. Taking the respective BC
matrix as a reference, for FD-BC/PANi blends the swelling ratio de-
creases more significantly (around 90%) when compared to the re-
maining blends (60%). Moreover, both FD-IS and FD-ES blends pre-
sented a higher swelling ratio when compared to D-IS and D-ES blends,
while R-IS presented the lowest swelling. This way, it can be concluded
that the water reabsorption capacity of the BC/PANi blends is highly
influenced by the BC matrix used.

The contact angle measurements were performed for the several BC
matrixes to search for changes in their hydrophilicity (Fig. 7). OD-BC
presented a contact angle of 47.6°, whereas by freeze-drying it is greatly
reduced (23.7°), which indicates a higher hydrophilic behaviour. In
contrast, R-BC presented a higher contact angle (54.0°), indicating an
increase in the hydrophobic behaviour. These results corroborate the
swelling studies where followed the same trend as well as indicated that
by freeze-drying confers BC a more hydrophilic behaviour, whereas by
regeneration a more hydrophobic BC is obtained.

Regarding the BC/PANi blends, it was observed an increase in the
contact angle when compared to the respective BC matrix (1.1-2.7
times higher). The D-IS blend presented the lowest contact angle (54.3°)
whereas R-IS presented the highest contact angle (85.6°). However, the
contact angle analysis was unable to discern any direct relation with the
synthesis conditions employed.

3.6. Polymer uptake and electrical conductivity

The polymer uptake and electrical conductivity of BC/PANi blends
were evaluated, being found in Fig. 8. Regarding the different BC ma-
trixes used, both D-IS and D-ES blends presented lower polymer con-
tents in comparison to FD-IS and FD-ES respectively, which indicates
the influence of the BC matrix used. As seen above, FD-BC matrix
presents a high porosity and high swelling (Fig. 6), which contributes to
higher incorporation yields when compared to drained BC. On the other
hand, the electrical conductivity of the drained BC/PANi blends is
higher when compared to the remaining blends. These differences could
indicate changes in the PANi chain orientation and/or molecular
weight with the use of different BC matrixes. More specifically, it means
that FD-BC network is unfavorable for PANi chain growth, leading to a
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Fig. 4. SEM micrographs (3000 X ) of BC matrixes and BC/PANi blends.

lower ability to conduct electricity.

Regarding the synthesis method, in situ polymerization positively
influenced the polymer content incorporated as well as the electrical
conductivity (1.9-2.6 times higher) than the blends obtained through
ex situ chemical polymerization. All of the BC/PANi blends obtained fall
within the range of semiconductive materials, which ranges 10~7-10°
S/cm (Kaur et al., 2015).

Through the polymer uptake and electrical conductivity analysis it
is possible to observe that in situ polymerization promotes higher PANi
contents as well as higher conductivities. Moreover, the use of a drained
BC membrane over a freeze-dried or regenerated lead to higher con-
ductivities. Thus, the use of drained BC via in situ polymerization should
be highlighted as the most suitable method for highly conductive BC/
PANi blends.

3.7. Surface properties

IGC analysis has been used to observe changes in the surface
properties with the different BC matrix processing methods, as well as
to observe any physico-chemical changes that occurred during the
synthesis of the blends. This way, it would provide further information
regarding the influence of the BC matrix and synthesis method in the
final properties of the BC/PANi blends.

3.7.1. Surface energy

The dispersive surface energies (ysd) of the different BC matrixes
obtained ranged between 35.6-37.6 mJ/m? (Table 2), which is close to
values found the literature to BC, (Castro et al., 2015; Ferguson et al.,
2016). The differences in the ysd values, indicates that the different BC
matrix processing methods affected the orientation of the BC surface
groups, as observed by EDX.

With PANi incorporation, the ySD of the BC matrixes significantly

increases due to the PANi incorporation, which presents a high y”
value. Also, the increased ySD is corroborated by an increase of the C
amount through EDX (Table 1), due to the C-H groups of PANi aromatic
ring. Higher C amounts are attained in FD-ES (highest ySD ) while lower C
amounts were obtained for R-IS (lower ySD ). Moreover, the increased ysd
can be related to an increase of the surface hydrophobicity, as seen
through the contact angles.

Through the surface energy analysis, it was possible to obtain in-
dication of changes in the surface group orientation during the different
BC matrix processing methods as well it was obtained compelling data
that suggests the PANi incorporation onto the membranes.

3.7.2. Acid-base surface character

Observing cellulose chemical structure, it is expected an amphoteric
behaviour, with a predominantly acidic character, due to the electron
acceptor (H from hydroxyl groups) and electron donor (O from gluco-
sidic bonds and hydroxyl groups) groups (Fig. 2). OD-BC presented a
Ky/K, of 0.7, which shows an acidic behaviour. Castro et al., 2015 and
(Pommet et al., 2008) reported the same acidic behaviour as the ob-
tained OD-BC in the current work (Table 2). In both FD-BC and R-BC
the acidic behaviour is more pronounced (K,/K, of 0.6), meaning that
there is a higher number of acidic groups available in the surface, when
compared to the basic groups. Thus, the K,/K, values further indicates
changes in the orientation of the surface groups with the different BC
matrix processing methods.

For PANI a basic character is observed (Table 2), which results from
the presence of amine groups throughout the polymer chains. With
PANIi incorporation in the BC matrixes, the BC acidic behaviour (K;/K,
ranging from 0.6 to 0.8) is shifted into a basic behaviour (Kp/K, ranging
from 1.9 to 3.8), corroborating the fact that the PANi polymer can be
found at the surface. Also, the percentage of N and O, presented in
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Fig. 6. Swelling behaviour of the (A) BC matrixes and (B) BC/PANi blends.

Table 1, gives an indication of the relative basicity of the BC/PANi
blends. The percentage of N given by EDX (Table 1) is associated with
the amine groups of PANi whereas the percentage of O is associated to
the hydroxyl and ether groups of cellulose. When compared to the K/

260

K, values (Table 2), it is seen that the presence of higher N and lower O
values are associated with higher K;,/K, values. This way, the acid base
study through IGC can suggest changes in the PANi amount on the
surface.

4. Conclusion

The current work aims to improve the BC properties through the
employment of different BC matrixes as well as synthesis methods
during the synthesis of the BC/PANi blends. The results demonstrated
that the different processing methods applied onto the BC matrix
greatly influence the morphology and the surface properties, which
were reflected when used for the synthesis of the BC/PANi blends. The
use of a drained BC membrane led into higher conductive BC/PANi
blends. Moreover, the use of different polymerization methods favors
the use of in situ polymerization for the production of highly conductive
membranes. Therefore, the current work evidence the influence of the
different BC treatments, as well as the different polymerization
methods, in the properties of the resulting blends. Furthermore, the
obtained results encourage the use of this polymeric blend in further
studies which could be applied in field of electronics due to its prop-
erties and rather ease in manufacture.
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Table 2
Surface energy and acid/base behaviour of BC and respective blends at 25 °C.

Sample 7® (mi/m?) Ky/Kq

OD-BC 37.7% *+ 0.9 0.8% + 0.0
FD-BC 35.2%% + 0.9 0.6 + 0.0
R-BC 34.6" + 0.9 0.6" = 0.0
PANi 119.9° + 3.6 358 + 0.1
D-IS 64.4° + 1.9 2.6° + 0.1
FD-IS 67.7° = 2.0 1.9 + 0.1
R-IS 51.9 * 1.1 1.9 + 0.0
D-ES 63.7° + 1.9 2.3¢ + 0.1
FD-ES 75.0¢ + 2.3 3.8° + 0.1

ysd— Dispersive component of the surface energy; K,/K, - basicity ratio. Values in same

column not sharing a common superscript are statistically different (p < 0.05).
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