38 research outputs found

    The amino-terminal segment in the β-domain of δ-cadinene synthase is essential for catalysis

    Get PDF
    Despite its distance from the active site the flexible amino-terminal segment (NTS) in the β-domain of the plant sesquiterpene cyclase δ-cadinene synthase (DCS) is essential for active site closure and desolvation events during catalysis

    Enzymatic synthesis of natural (+)-aristolochene from a non-natural substrate

    Get PDF
    The sesquiterpene cyclase aristolochene synthase from Penicillium roquefortii (PR-AS) has evolved to catalyse with high specificity (92%) the conversion of farnesyl diphosphate (FDP) to the bicyclic hydrocarbon (+)-aristolochene, the natural precursor of several fungal toxins. Here we report that PR-AS converts the unnatural FDP isomer 7-methylene farnesyl diphosphate to (+)-aristolochene via the intermediate 7-methylene germacrene A. Within the confined space of the enzyme's active site, PR-AS stabilises the reactive conformers of germacrene A and 7-methylene germacrene A, respectively, which are protonated by the same active site acid (most likely HOPPi) to yield the shared natural bicyclic intermediate eudesmane cation, from which (+)-aristolochene is then generated

    Structural Elucidation of Cisoid and Transoid Cyclization Pathways of a Sesquiterpene Synthase Using 2-Fluorofarnesyl Diphosphates

    Get PDF
    Sesquiterpene skeletal complexity in nature originates from the enzyme-catalyzed ionization of (trans,trans)-farnesyl diphosphate (FPP) (1a) and subsequent cyclization along either 2,3-transoid or 2,3-cisoid farnesyl cation pathways. Tobacco 5-epi-aristolochene synthase (TEAS), a transoid synthase, produces cisoid products as a component of its minor product spectrum. To investigate the cryptic cisoid cyclization pathway in TEAS, we employed (cis,trans)-FPP (1b) as an alternative substrate. Strikingly, TEAS was catalytically robust in the enzymatic conversion of (cis,trans)-FPP (1b) to exclusively (≥99.5%) cisoid products. Further, crystallographic characterization of wild-type TEAS and a catalytically promiscuous mutant (M4 TEAS) with 2-fluoro analogues of both all-trans FPP (1a) and (cis,trans)-FPP (1b) revealed binding modes consistent with preorganization of the farnesyl chain. These results provide a structural glimpse into both cisoid and transoid cyclization pathways efficiently templated by a single enzyme active site, consistent with the recently elucidated stereochemistry of the cisoid products. Further, computational studies using density functional theory calculations reveal concerted, highly asynchronous cyclization pathways leading to the major cisoid cyclization products. The implications of these discoveries for expanded sesquiterpene diversity in nature are discussed

    Emergence of terpene cyclization in Artemisia annua

    Get PDF
    The emergence of terpene cyclization was critical to the evolutionary expansion of chemical diversity yet remains unexplored. Here we report the first discovery of an epistatic network of residues that controls the onset of terpene cyclization in Artemisia annua. We begin with amorpha-4,11-diene synthase (ADS) and (E)-b-farnesene synthase (BFS), a pair of terpene synthases that produce cyclic or linear terpenes, respectively. A library of B27,000 enzymes is generated by breeding combinations of natural amino-acid substitutions from the cyclic into the linear producer. We discover one dominant mutation is sufficient to activate cyclization, and together with two additional residues comprise a network of strongly epistatic interactions that activate, suppress or reactivate cyclization. Remarkably, this epistatic network of equivalent residues also controls cyclization in a BFS homologue from Citrus junos. Fitness landscape analysis of mutational trajectories provides quantitative insights into a major epoch in specialized metabolism

    TiO2-reduced graphene oxide nanocomposites: Microsecond charge carrier kinetics

    Full text link
    This Accepted Manuscript will be available for reuse under a CC BY-NC-ND licence after 24 months of embargo periodIn this work, transient absorption spectroscopy studies in the microsecond time scale were carried out to investigate the dynamics of photogenerated electron-hole pairs in TiO2-rGO nanocomposites, prepared by a hydrothermal method, under different atmospheres: N2, O2, and N2 saturated in CH3OH. Under N2 atmosphere, the transient absorption signal detected in the region between 450 and 700 nm dropped as the rGO mass concentration in the composite was raised. The electron transfer from TiO2 to rGO was confirmed by using a model based on fractal surfaces which describes the decay kinetics. In the presence of methanol as hole acceptor, P25-rGO 0.5% and 1% were able to reach the maximum transient absorption faster than the other studied nanocomposites. However, after 10 μs, the P25-rGO 0.1% nanocomposite yielded the highest transient absorption signal and the best conversion and initial reaction rate in the photocatalytic degradation of dichloroacetic acid in aqueous suspensions. The effect of rGO on free electrons was investigated by detecting the transient signal at 980 nm under N2 saturated in CH3OH, for the different samples. It was found that the measured signals followed the same response than at 660 nm further evincing the electron transfer process. No sensitization effect of rGO was observed when the samples were excited at 450 nm.This work has been supported by the Spanish Plan Nacional de I+D+i through the project CTM2015-64895-R. Alvaro Tolosana-Moranchel thanks to Ministerio de Educación, Cultura y Deporte for his FPU grant (FPU14/01605) and (EST16/00065). The authors are also grateful to Technical Research Support Unit of Instituto de Catálisis y Petroleoquímica (CSIC

    Evolutionary and Mechanistic Insights from the Reconstruction of α‑Humulene Synthases from a Modern (+)-Germacrene A Synthase

    Get PDF
    Germacrene A synthase (GAS) from <i>Solidago canadensis</i> catalyzes the conversion of farnesyl diphosphate (FDP) to the plant sesquiterpene (+)-germacrene A. After diphosphate expulsion, farnesyl cation reacts with the distal 10,11-double bond to afford germacrene A (>96%) and <2% α-humulene, which arises from 1,11-cyclization of FDP. The origin of the 1,11-activity of GAS was investigated by amino acid sequence alignments of 1,10- and 1,11-synthases and comparisons of X-ray crystal structures with the homology model of GAS; a triad [Thr 401-Gly 402-Gly 403] that might be responsible for the predominant 1,10-cyclization activity of GAS was identified. Replacement of Gly 402 with residues of increasing size led to a progressive increase of 1,11-cyclization. The catalytic robustness of these 1,10- /1,11-GAS variants point to Gly 402 as a functional switch of evolutionary significance and suggests that enzymes with strict functionalities have evolved from less specific ancestors through a small number of substitutions. Similar results were obtained with germacrene D synthase (GDS) upon replacement of the homologous active-site residue Gly 404: GDS-G404V generated approximately 20% bicyclogermacrene, a hydrocarbon with a cyclopropane ring that underlines the dual 1,10-/1,11-cyclization activity of this mutant. This suggests that the reaction pathways to germacrenes and humulenes might be connected through a bridged 1,10,11-carbocation intermediate or transition state that resembles bicyclogermacrene. Mechanistic studies using [1-<sup>3</sup>H<sub>1</sub>]-10-fluorofarnesyl diphosphate and deuterium-labeling experiments with [12,13-<sup>2</sup>H<sub>6</sub>]-FDP support a germacrene–humulene rearrangement linking 1,10- and 1,11-pathways. These results support the bioinformatics proposal that modern 1,10-synthases could have evolved from promiscuous 1,11-sesquiterpene synthases

    Mechanistic Insights from the Binding of Substrate and Carbocation Intermediate Analogues to Aristolochene Synthase

    No full text
    Aristolochene synthase, a metal-dependent sesquiterpene cyclase from Aspergillus terreus, catalyzes the ionization-dependent cyclization of farnesyl diphosphate (FPP) to form the bicyclic eremophilane (+)-aristolochene with perfect structural and stereochemical precision. Here, we report the X-ray crystal structure of aristolochene synthase complexed with three Mg2+ ions and the unreactive substrate analogue farnesyl-S-thiolodiphosphate (FSPP), showing that the substrate diphosphate group is anchored by metal coordination and hydrogen bond interactions identical to those previously observed in the complex with three Mg2+ ions and inorganic pyrophosphate (PPi). Moreover, the binding conformation of FSPP directly mimics that expected for productively bound FPP, with the exception of the precise alignment of the C–S bond with regard to the C10–C11 π system that would be required for C1–C10 bond formation in the first step of catalysis. We also report crystal structures of aristolochene synthase complexed with Mg2+3-PPi and ammonium or iminium analogues of bicyclic carbocation intermediates proposed for the natural cyclization cascade. Various binding orientations are observed for these bicyclic analogues, and these orientations appear to be driven by favorable electrostatic interactions between the positively charged ammonium group of the analogue and the negatively charged PPi anion. Surprisingly, the active site is sufficiently flexible to accommodate analogues with partially or completely incorrect stereochemistry. Although this permissiveness in binding is unanticipated, based on the stereochemical precision of catalysis that leads exclusively to the (+)-aristolochene stereoisomer, it suggests the ability of the active site to enable controlled reorientation of intermediates during the cyclization cascade. Taken together, these structures illuminate important aspects of the catalytic mechanism
    corecore