22 research outputs found

    Characteristics and incidence of transfusion-associated necrotizing enterocolitis in the UK

    Get PDF
    BACKGROUND AND AIMS: The etiology of necrotizing enterocolitis (NEC) is unclear and postulated as being multifactorial. It has been suggested that one causative factor is the transfusion of packed red blood cells (PRBCs) leading to the disease entity commonly referred to as transfusion-associated NEC (TANEC). TANEC has been reported in North America but its incidence has not been formally investigated in the UK. Our aims were to identify the incidence of NEC and TANEC in tertiary-level UK neonatal units and to describe characteristics of TANEC cases. MATERIALS AND METHODS: Using strict case definitions for NEC and TANEC, we undertook a retrospective review to estimate the incidence of TANEC cases occurring in four UK tertiary-level centers during a 38-month period. RESULTS: Of 8007 consecutive neonatal admissions of all gestations to the four centers, 68 babies went on to develop NEC and all affected infants were of very low birth weight (VLBW); 34 of these had previously received a transfusion of PRBCs but did not fit the diagnostic criteria for TANEC, whereas 15 (22%) of the 68 babies with NEC qualified as TANEC cases. UK cases occurred at an earlier postnatal age than cases reported in multiple large North American series and were of a lower birth weight. CONCLUSIONS: We have confirmed the presence of TANEC in the UK VLBW neonatal population. Its incidence lies within the wide range described in previous reports of this phenomenon globally, though with some local variation in characteristics. Further work is needed to clarify causation, pathophysiology, and possible mechanisms of prevention of TANEC

    Drug Discovery for Kinetoplastid Diseases : Future Directions

    Get PDF
    International audienceKinetoplastid parasites have caused human disease for millennia. Significant achievements have been made toward developing new treatments for leishmaniasis (particularly on the Indian subcontinent) and for human African trypanosomiasis (HAT). Moreover, the sustained decrease in the incidence of HAT has made the prospect of elimination a tantalizing reality. Despite the gains, no new chemical or biological entities to treat kinetoplastid diseases have been registered in more than three decades, and more work is needed to discover safe and effective therapies for patients with Chagas disease and leishmaniasis. Advances in tools for drug discovery and novel insights into the biology of the host-parasite interaction may provide opportunities for accelerated progress. Here, we summarize the output from a gathering of scientists and physicians who met to discuss the current status and future directions in drug discovery for kinetoplastid diseases

    The crossroads of evidence-based medicine and health policy: implications for urology

    Get PDF
    As healthcare spending in the United States continues to rise at an unsustainable rate, recent policy decisions introduced at the national level will rely on precepts of evidence-based medicine to promote the determination, dissemination, and delivery of “best practices” or quality care while simultaneously reducing cost. We discuss the influence of evidence-based medicine on policy and, in turn, the impact of policy on the developing clinical evidence base with an eye to the potential effects of these relationships on the practice and provision of urologic care

    Genetic Variation in the Platelet Endothelial Aggregation Receptor 1 Gene Results in Endothelial Dysfunction

    Get PDF
    We gratefully acknowledge our Amish liaisons and field workers and the extraordinary cooperation and support of the Amish community, without which these studies would not have been possible. We also acknowledge Dr. Alan Shuldiner for his impactful insights and guidance.Platelet Endothelial Aggregation Receptor 1 (PEAR1) is a newly identified membrane protein reported to be involved in multiple vascular and thrombotic processes. While most studies to date have focused on the effects of this receptor in platelets, PEAR1 is located in multiple tissues including the endothelium, where it is most highly expressed. Our first objective was to evaluate the role of PEAR1 in endothelial function by examining flow-mediated dilation of the brachial artery in 641 participants from the Heredity and Phenotype Intervention Heart Study. Our second objective was to further define the impact of PEAR1 on cardiovascular disease computationally through meta-analysis of 75,000 microarrays, yielding insights regarding PEAR1 function, and predictions of phenotypes and diseases affected by PEAR1 dysregulation. Based on the results of this meta-analysis we examined whether genetic variation in PEAR1 influences endothelial function using an ex vivo assay of endothelial cell migration. We observed a significant association between rs12041331 and flow-mediated dilation in participants of the Heredity and Phenotype Intervention Heart Study (P = 0.02). Meta-analysis results revealed that PEAR1 expression is highly correlated with several genes (e.g. ANG2, ACVRL1, ENG) and phenotypes (e.g. endothelial cell migration, angiogenesis) that are integral to endothelial function. Functional validation of these results revealed that PEAR1 rs12041331 is significantly associated with endothelial migration (P = 0.04). Our results suggest for the first time that genetic variation of PEAR1 is a significant determinant of endothelial function through pathways implicated in cardiovascular disease.Yeshttp://www.plosone.org/static/editorial#pee

    Research data supporting the publication "Under Pressure: Offering Fundamental Insight into Structural Changes on Ball Milling Battery Materials"

    No full text
    Data depository includes the following: Powder X-ray diffraction (PXRD) of the ball-milled Li2MoO4 (at 40Hz and 50Hz, with varying ball size of 7 and 10 mm). PXRD of H-Nb2O5 ball-milled at 40 Hz and 50 Hz (7 mm ball) Electrochemical data of Li2MoO4 and Li2MnO3 (ball-milled samples). TEM of Li2MoO4 and the ball-milled equivalent. Li and Mo NMR of Li2MoO4 and the ball-milled equivalent
    corecore