119 research outputs found

    Wandering Pattern Sensing at S-Band

    Get PDF
    Increasing prevalence of dementia has posed several challenges for care-givers. Patients suffering from dementia often display wandering behavior due to boredom or memory loss. It is considered to be one of the challenging conditions to manage and understand. Traits of dementia patients can compromise their safety causing serious injuries. This paper presents investigation into the design and evaluation of wandering scenarios with patients suffering from dementia using an S-band sensing technique. This frequency band is the wireless channel commonly used to monitor and characterize different scenarios including random, lapping, and pacing movements in an indoor environment. Wandering patterns are characterized depending on the received amplitude and phase information of that measures the disturbance caused in the ideal radio signal. A secondary analysis using support vector machine is used to classify the three patterns. The results show that the proposed technique carries high classification accuracy up to 90% and has good potential for healthcare application

    Detection of Essential Tremor at the S -Band

    Get PDF
    Essential tremor (ET) is a neurological disorder characterized by rhythmic, involuntary shaking of a part or parts of the body. The most common tremor is seen in the hands/arms and fingers. This paper presents an evaluation of ETs monitoring based on finger-to-nose test measurement as captured by small wireless devices working in shortwave or S-band frequency range. The acquired signals in terms of amplitude and phase information are used to detect a tremor in the hands. Linearly transforming raw phase data acquired in the S-band were carried out for calibrating the phase information and to improve accuracy. The data samples are used for classification using support vector machine algorithm. This model is used to differentiate the tremor and nontremor data efficiently based on secondary features that characterize ET. The accuracy of our measurements maintains linearity, and more than 90% accuracy rate is achieved between the feature set and data samples

    A transcriptomic and epigenomic cell atlas of the mouse primary motor cortex.

    Get PDF
    Single-cell transcriptomics can provide quantitative molecular signatures for large, unbiased samples of the diverse cell types in the brain1-3. With the proliferation of multi-omics datasets, a major challenge is to validate and integrate results into a biological understanding of cell-type organization. Here we generated transcriptomes and epigenomes from more than 500,000 individual cells in the mouse primary motor cortex, a structure that has an evolutionarily conserved role in locomotion. We developed computational and statistical methods to integrate multimodal data and quantitatively validate cell-type reproducibility. The resulting reference atlas-containing over 56 neuronal cell types that are highly replicable across analysis methods, sequencing technologies and modalities-is a comprehensive molecular and genomic account of the diverse neuronal and non-neuronal cell types in the mouse primary motor cortex. The atlas includes a population of excitatory neurons that resemble pyramidal cells in layer 4 in other cortical regions4. We further discovered thousands of concordant marker genes and gene regulatory elements for these cell types. Our results highlight the complex molecular regulation of cell types in the brain and will directly enable the design of reagents to target specific cell types in the mouse primary motor cortex for functional analysis

    Comparative cellular analysis of motor cortex in human, marmoset and mouse

    Get PDF
    The primary motor cortex (M1) is essential for voluntary fine-motor control and is functionally conserved across mammals1. Here, using high-throughput transcriptomic and epigenomic profiling of more than 450,000 single nuclei in humans, marmoset monkeys and mice, we demonstrate a broadly conserved cellular makeup of this region, with similarities that mirror evolutionary distance and are consistent between the transcriptome and epigenome. The core conserved molecular identities of neuronal and non-neuronal cell types allow us to generate a cross-species consensus classification of cell types, and to infer conserved properties of cell types across species. Despite the overall conservation, however, many species-dependent specializations are apparent, including differences in cell-type proportions, gene expression, DNA methylation and chromatin state. Few cell-type marker genes are conserved across species, revealing a short list of candidate genes and regulatory mechanisms that are responsible for conserved features of homologous cell types, such as the GABAergic chandelier cells. This consensus transcriptomic classification allows us to use patch-seq (a combination of whole-cell patch-clamp recordings, RNA sequencing and morphological characterization) to identify corticospinal Betz cells from layer 5 in non-human primates and humans, and to characterize their highly specialized physiology and anatomy. These findings highlight the robust molecular underpinnings of cell-type diversity in M1 across mammals, and point to the genes and regulatory pathways responsible for the functional identity of cell types and their species-specific adaptations

    A multimodal cell census and atlas of the mammalian primary motor cortex

    Get PDF
    ABSTRACT We report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex (MOp or M1) as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties, and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Together, our results advance the collective knowledge and understanding of brain cell type organization: First, our study reveals a unified molecular genetic landscape of cortical cell types that congruently integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a unified taxonomy of transcriptomic types and their hierarchical organization that are conserved from mouse to marmoset and human. Third, cross-modal analysis provides compelling evidence for the epigenomic, transcriptomic, and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types and subtypes. Fourth, in situ single-cell transcriptomics provides a spatially-resolved cell type atlas of the motor cortex. Fifth, integrated transcriptomic, epigenomic and anatomical analyses reveal the correspondence between neural circuits and transcriptomic cell types. We further present an extensive genetic toolset for targeting and fate mapping glutamatergic projection neuron types toward linking their developmental trajectory to their circuit function. Together, our results establish a unified and mechanistic framework of neuronal cell type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties

    SMOOTHED PARTICLE HYDRODYNAMICS SIMULATION OF EFFECTIVE THERMAL CONDUCTIVITY IN POROUS MEDIA OF VARIOUS PORE STRUCTURES

    No full text
    Heat conduction through a 2-D porous medium layer with complicated cylindrical or quadrangular pore structures is simulated using the smoothed particle hydrodynamics technique. Heat transfer paths are visualized at the micropore level, and the dependence of the effective thermal conductivity on the micropore structure is analyzed. As expected, heat always follows the path of least resistance through the porous structures. Globally, enhanced heat transfer paths tend to form in the porous medium having the smallest circular inclusions. The dependence of the effective thermal conductivity on the micro pore structure is found to be closely related to the formation of enhanced heat transfer paths. For the porous medium with dispersed pore phase, the inclusion shape and size and the relative arrangement between inclusions do not have any particular effect on the relation between the effective thermal conductivity and the porosity. This finding is also well predicted by the effective medium theoretical (EMT) model with a flexible factor within the range 4.0-4.5. Owing to the significant effect of the pore-phase distribution, for the porous medium with continuous pore phase, the relation between the effective thermal conductivity and porosity can be predicted using the EMT model only if the flexible factor is taken for a value of 3.5

    Minimization of thermal non-uniformity in lithium-ion battery pack cooled by channeled liquid flow

    No full text
    In this work we conduct a numerical study with the aim of analyzing the effectiveness of cooling channels to reduce thermal non-uniformity in lithium-ion battery packs of electric vehicles. Particular approaches toward zero or near-zero thermal non-uniformity in lithium-ion battery packs are proposed and their performance and viability are evaluated through numerical simulations. Battery packs cooled by liquid flowing in serpentine channels are used to illustrate the proposed approaches. A thermal model, which has been extensively tested, is applied to a battery module of 71 18650-type NMC (nickel-manganese cobalt) batteries. In particular, among several approaches, two of them show considerable promise in improving the pack thermal uniformity, namely: (a) shortened flow paths by using multiple serpentine channels, and (b) increasing contact areas between the batteries and the serpentine channel along the flow path in the streamwise direction. The results of the numerical simulation indicate that these two particular approaches can reduce the thermal non-uniformity of the battery module under 5C discharge operations to values lower than 2.2 K and 0.7 K, respectively. The description, functional feasibility and effectiveness of these approaches are extensively covered in the present work. (C) 2018 Elsevier Ltd. All rights reserved
    • 

    corecore