57 research outputs found

    HPV Infection in Esophageal Squamous Cell Carcinoma and Its Relationship to the Prognosis of Patients in Northern China

    Get PDF
    Purpose. Human papillomavirus (HPV) as a risk factor for esophageal squamous cell carcinoma (ESCC) has previously been studied, but importance of HPV status in ESCC for prognosis is less clear. Methods. A total of 105 specimens with ESCC were tested by in situ hybridization for HPV 16/18 and immunohistochemistry for p16 expression. The 5-year overall survival (OS) and progression-free survival were calculated in relation to these markers and the Cox proportional hazards model was used to determine the hazard ratio (HR) of variables in univariate and multivariate analysis. Results. HPV was detected in 27.6% (29) of the 105 patients with ESCC, and all positive cases were HPV-16. Twenty-five (86.2%) of the 29 HPV-positive tumors were stained positive for p16. HPV infected patients had better 5-year rates of OS (65.9% versus 43.4% among patients with HPV-negative tumors; P = 0.002 by the log-rank test) and had a 63% reduction in the risk of death (adjusted HR = 0.37, 95% CI = 0.16 to 0.82, and P = 0.01). Conclusions. HPV infection may be one of many factors contributing to the development of ESCC and tumor HPV status is an independent prognostic factor for survival among patients with ESCC

    Assessing the Pharmacological and Therapeutic Efficacy of Traditional Chinese Medicine Liangxue Tongyu Prescription for Intracerebral Hemorrhagic Stroke in Neurological Disease Models

    Get PDF
    Intracerebral hemorrhage is a fatal subtype of stroke, with crucial impact on public health. Surgical removal of the hematoma as an early-stage treatment for ICH can’t improve long-term prognosis remarkably. Liangxue tongyu prescription (LP), a Traditional Chinese Medicine (TCM) formula, includes eight ingredients and has been used to treat ICH in the clinical. In the study, we elucidated the pharmacological efficacy and therapeutic efficacy of LP to dissect the mechanism of LP against ICH via network analysis and experimental validation. First, we discovered 34 potential compounds and 146 corresponding targets in LP based on network prediction. 24 signal pathway were obtained by the Clue Go assay based on potential compounds in LP against ICH. Second, we found that LP can not only decreased the level of high sensitive C reactive protein (HS-CRP), tumor necrosis factor-α (TNF-α), NF-kβ, D-dimmer (D2D), estradiol (E2), S-100B, neuron specific enolase (NSE), and interleukin 1 (IL-1) in plasma on spontaneously hypertensive rats (SHRs), but also promoted cell proliferation and inhibited cell apoptosis on the glutamate-induced PC12 cell. The compounds including Taurine, Paeonol, and Ginsenoside Rb1 in LP can activate PI3K/AKT pathway. Third, from the three-factor two-level factorial design, compound combinations in LP, such as Taurine and Paeonol, Taurine and Geniposide, Ginsenoside Rg1, and Ginsenoside Rb1, had first-level interactions on cell proliferation. Compound combinations including Taurine and Paeonol, Ginsenoside Rg1 and Ginsenoside Rb1 had as significant increase in efficiency on inhibiting the apoptosis of PC12 cells at the low concentration and up-regulating of PI3K and AKT. Overall, our results suggested that LP had integrated therapeutic effect on ICH due to activities of anti-inflammatory, anti-coagulation, blood vessel protection, and protection neuron from excitotoxicity based on the way of “multi-component, multi-target, multi-pathway,” and compound combination in LP can offer protection neuron from excitotoxicity at the low concentration by activation of the PI3K/Akt signal pathway

    Fabrication of Porous TiO2 Hollow Spheres and Their Application in Gas Sensing

    Get PDF
    In this work, porous TiO2 hollow spheres with an average diameter of 100 nm and shell thickness of 20 nm were synthesized by a facile hydrothermal method with NH4HCO3 as the structure-directing agent, and the formation mechanism for this porous hollow structure was proved to be the Ostwald ripening process by tracking the morphology of the products at different reaction stages. The product was characterized by SEM, TEM, XRD and BET analyses, and the results show that the as-synthesized products are anatase phase with a high surface area up to 132.5 m2/g. Gas-sensing investigation reveals that the product possesses sensitive response to methanal gas at 200°C due to its high surface area

    Dominant role of GABAB2 and Gbetagamma for GABAB receptor-mediated-ERK1/2/CREB pathway in cerebellar neurons

    Full text link
    gamma-aminobutyric acid type B (GABA(B)) receptor is an allosteric complex made of two subunits, GABA(B1) and GABA(B2). GABA(B2) plays a major role in the coupling to G protein whereas GABA(B1) binds GABA. It has been shown that GABA(B) receptor activates ERK(1/2) in neurons of the central nervous system, but the molecular mechanisms underlying this event are poorly characterized. Here, we demonstrate that activation of GABA(B) receptor by either GABA or the selective agonist baclofen induces ERK(1/2) phosphorylation in cultured cerebellar granule neurons. We also show that CGP7930, a positive allosteric regulator specific of GABA(B2), alone can induce the phosphorylation of ERK(1/2). PTX, a G(i/o) inhibitor, abolishes both baclofen and CGP7930-mediated-ERK(1/2) phosphorylation. Moreover, both baclofen and CGP7930 induce ERK-dependent CREB phosphorylation. Furthermore, by using LY294002, a PI-3 kinase inhibitor, and a C-term of GRK-2 that has been reported to sequester Gbetagamma subunits, we demonstrate the role of Gbetagamma in GABA(B) receptor-mediated-ERK(1/2) phosphorylation. In conclusion, the activation of GABA(B) receptor leads to ERK(1/2) phosphorylation via the coupling of GABA(B2) to G(i/o) and by releasing Gbetagamma subunits which in turn induce the activation of CREB. These findings suggest a role of GABA(B) receptor in long-term change in the central nervous system

    Shape-control and characterization of iron nanocrystals prepared via a one-step solvothermal method

    No full text
    In the present work, iron nanocubes, nanorods and nanovvires are successfully synthesized by one-step I eduction approach in a solvothermal environment. It is analyzed that the iron nanocubes, nanorods and nanowires belong to the pure body-centered cubic structure of alpha-Fe. Effects of additive sort and the amount of Anionic Gemini surfactant 12-4-12 on the morphology evolution of Fe are discussed based On SEM and TEM images. The possible formation mechanisms of iron nanocubes, nanorods and nanowires are proposed. The Anionic Gemini surfactant 12-4-12 regarded as template plays an important role in the formation of iron nanocrystals. The microwave electromagnetic (EM) (SO wt% Fe) and calculated microwave-absorbing (0.5 mm thickness) properties in 2-18 GHz of the iron nanocubes, nanorods and nanowires are studied systematically. Results show that iron nanovvires are superior to nanorods and nanocubes, which indicates the potential to be a super-thin microwave absorber. (C) 2015 Elsevier B.V. All rights reserve

    pH-Responsive Eco-Friendly Chitosan–Chlorella Hydrogel Beads for Water Retention and Controlled Release of Humic Acid

    No full text
    For improving the mechanical strength of controlled release fertilizer (CRF) hydrogels, a novel material of Chlorella was employed as a bio-based filler to prepare chitosan–chlorella hydrogel beads with physical crosslink method. Here, the synthesis mechanism was investigated, and the chitosan–chlorella hydrogel beads exhibited enhanced mechanical stability under centrifugation and sonication than pure chitosan hydrogel beads. Chlorella brought more abundant functional groups to original chitosan hydrogel, hence, chitosan–chlorella hydrogel beads represented greater sensitivity and controllable response to external factors including pH, salt solution, temperature. In distilled water, the hydrogel beads with 40 wt% Chlorella reached the largest water absorption ratio of 42.92 g/g. Moreover, the mechanism and kinetics process of swelling behavior of the chitosan–chlorella hydrogel beads were evaluated, and the loading and releasing of humic acid by the hydrogel beads as a carrier material were pH-dependent and adjustable, which exhibit the potential of chitosan–chlorella hydrogel beads in the field of controlled release carrier biomaterials

    Fabrication of Porous TiO<sub>2</sub> Hollow Spheres and Their Application in Gas Sensing

    No full text
    Abstract In this work, porous TiO2 hollow spheres with an average diameter of 100 nm and shell thickness of 20 nm were synthesized by a facile hydrothermal method with NH4HCO3 as the structure-directing agent, and the formation mechanism for this porous hollow structure was proved to be the Ostwald ripening process by tracking the morphology of the products at different reaction stages. The product was characterized by SEM, TEM, XRD and BET analyses, and the results show that the as-synthesized products are anatase phase with a high surface area up to 132.5 m2/g. Gas-sensing investigation reveals that the product possesses sensitive response to methanal gas at 200&#176;C due to its high surface area.</p

    Characterization and Prognosis of Biological Microenvironment in Lung Adenocarcinoma through a Disulfidptosis-Related lncRNAs Signature

    No full text
    Background. The role of disulfidptosis-related lncRNAs remains unclear in lung adenocarcinoma. Methods. Analysis in R software was conducted using different R packages, which are based on the public data from The Cancer Genome Atlas (TCGA) database. The transwell assay was used to evaluate the invasion and migration abilities of lung cancer cells. Results. In our study, we identified 1401 lncRNAs significantly correlated with disulfidptosis-related genes (|Cor| > 0.3 and P<0.05). Then, we constructed a prognosis model consisting of 11 disulfidptosis-related lncRNAs, including AL133445.2, AL442125.1, AC091132.2, AC090948.1, AC020765.2, CASC8, AL606834.1, LINC00707, OGFRP1, U91328.1, and GASAL1. This prognosis model has satisfactory prediction performance. Also, the risk score and clinical information were combined to develop a nomogram. Analyses of biological enrichment and immune-related data were used to identify underlying differences between patients at high-risk and low-risk groups. Moreover, we noticed that the immunotherapy nonresponders have higher risk scores. Meanwhile, patients at a high risk responded more strongly to docetaxel, paclitaxel, and vinblastine. Furthermore, further analysis of the model lncRNA OGFRP1 was conducted, including clinical, immune infiltration, biological enrichment analysis, and a transwell assay. We discovered that by inhibiting OGFRP1, the invasion and migration abilities of lung cancer cells could be remarkably hindered. Conclusion. The results of our study can provide directions for future research in the relevant areas. Moreover, the prognosis signature we identified has the potential for clinical application

    Partial Ion Exchange Derived 2D Cu-Zn-In-S Nanosheets as Sensitizers of 1D TiO2 Nanorods for Boosting Solar Water Splitting

    No full text
    A facile route for the fabrication of a novel ZnS shell/Cu-Zn-In-S nanosheets/TiO2 nanorods heterojunction was reported in this work. Especially, the quaternary Cu-Zn-In-S nanosheets were synthesized creatively from the ternary ZnIn2S4 nanosheets by partial exchange reaction, leading to substantial enhancement on the light absorbance. Such heterojunction could increase the surface area and accelerate the charge transfer resulting from its hierarchical 2D/1D structure and favorable energy bands. Moreover, the ZnS coating acted as a passivation layer as well as a potential barrier, significantly suppressing the interface recombination. The above synergistic effects resulted in the largely increased photocurrent density from 0.34 mA cm(-2) for the pristine TiO2 to 0.81 mA cm(-2) for the heterojunction at 0.8 V vs RHE.</p
    • …
    corecore