100 research outputs found

    Enhancing the antibacterial performance of orthopaedic implant materials by fibre laser surface engineering

    Get PDF
    Implant failure caused by bacterial infection is extremely difficult to treat and usually requires the removal of the infected components. Despite the severe consequence of bacterial infection, research into bacterial infection of orthopaedic implants is still at an early stage compared to the effort on enhancing osseointegration, wear and corrosion resistance of implant materials. In this study, the effects of laser surface treatment on enhancing the antibacterial properties of commercially pure (CP) Ti (Grade 2), Ti6Al4V (Grade 5) and CoCrMo alloy implant materials were studied and compared for the first time. Laser surface treatment was performed by a continuous wave (CW) fibre laser with a near-infrared wavelength of 1064 nm in a nitrogen-containing environment. Staphylococcus aureus, commonly implicated in infection associated with orthopaedic implants, was used to investigate the antibacterial properties of the laser-treated surfaces. The surface roughness and topography of the laser-treated materials were analysed by a 2D roughness testing and by AFM. The surface morphologies before and after 24 h of bacterial cell culture were captured by SEM, and bacterial viability was determined using live/dead staining. Surface chemistry was analysed by XPS and surface wettability was measured using the sessile drop method. The findings of this study indicated that the laser-treated CP Ti and Ti6Al4V surfaces exhibited a noticeable reduction in bacterial adhesion and possessed a bactericidal effect. Such properties were attributable to the combined effects of reduced hydrophobicity, thicker and stable oxide films and presence of laser-induced nano-features. No similar antibacterial effect was observed in the laser-treated CoCrMo

    Therapy and prophylaxis of opportunistic infections in HIV-infected patients: a guideline by the German and Austrian AIDS societies (DAIG/ÖAG) (AWMF 055/066)

    Get PDF

    Efficacy of intraoperative wound irrigation for preventing shunt infection

    No full text

    Vancomycin Cerebrospinal Fluid Pharmacokinetics in Children with Cerebral Ventricular Shunt Infections

    No full text
    This study described the cerebrospinal fluid (CSF) exposure of vancomycin in 8 children prescribed intravenous vancomycin therapy for cerebral ventricular shunt infection. Vancomycin CSF concentrations ranged from 0.06 to 9.13 mg/L and the CSF: plasma ratio ranged from 0 to 0.66. Two children out of three with a staphylococcal CSF infection had CSF concentrations > minimal inhibitory concentration at the end of the dosing interval
    corecore