1,957 research outputs found

    Entanglement of eta-pairing state with off-diagonal long-range order

    Full text link
    Off-diagonal long-range order (ODLRO) is a quantum phenomenon not describable in classical mechanical terms. It is believed to be one characteristic of superconductivity. The quantum state constructed by eta-pairing which demonstrates ODLRO is an eigenstate of the three-dimensional Hubbard model. Entanglement is a key concept of the quantum information processing and has no classical counterpart. We study the entanglement property of eta-pairing quantum state. The concurrence is a well-known measure of quantum entanglement. We show that the concurrence of entanglement between one-site and the rest sites is exactly the correlation function of the ODLRO for the eta-pairing state in the thermodynamic limit. So, when the eta-pairing state is entangled, it demonstrates ODLRO and is thus in superconducting phase, if it is a separable state, there is no ODLRO. In the thermodynamic limit, the entanglement between M-site and other sites of the eta-pairing state does not vanish. Other types of ODLRO of eta-pairing state are presented. We show that the behavior of the ODLRO correlation functions is equivalent to that of the entanglement of the eta-pairing state. The scaling of the entropy of the entanglement for the eta-pairing state is studied.Comment: 4 pages, 4 eps figure

    Optical Monitoring of 3C 390.3 from 1995 to 2004 and Possible Periodicities in the Historical Light Curve

    Full text link
    We report V, R, and I band CCD photometry of the radio galaxy 3C 390.3 obtained with the 1.56-m telescope of the Shanghai Astronomical Observatory from March 1995 to August 2004. Combining these data with data from the literature, we have constructed a historical light curve from 1894 to 2004 and searched for periodicities using the CLEANest program. We find possible periods of 8.30+-1.17, 5.37+-0.49, 3.51+-0.21, and 2.13+-0.08 years.Comment: Accepted by AJ, 34 pages, 11 figure

    Influence of intensive melt shearing on the microstructure and mechanical properties of an Al-Mg alloy with high added impurity content

    Get PDF
    The official published version can be accessed from the link below - Copyright @ The Minerals, Metals & Materials Society and ASM International 2011We have investigated the influence of melt conditioning by intensive shearing on the mechanical behavior and microstructure of Al-Mg-Mn-Fe-Cu-Si alloy sheet produced from a small book mold ingot with high added impurity content. The melt conditioned ingot has fine grains throughout its cross section, whereas a conventionally cast ingot, without melt shearing, has coarser grains and shows a wider variation of grain size. Both needle-shaped and coarse Chinese script iron bearing intermetallic particles are found in the microstructure at the center of the conventionally processed ingot, but for the melt conditioned ingot, only fine Chinese script intermetallic particles are observed. In addition to the iron bearing intermetallics, Mg2Si particles are also observed. The ingots were rolled to thin sheet and solution heat treated (SHT). During rolling, the iron-based intermetallics and Mg2Si particles are broken and aligned along the rolling direction. Yield strength (YS), ultimate tensile strength (UTS), and elongation of the intensively melt sheared and processed sheet are all improved compared to the conventionally cast and processed sheet. Fractographic analysis of the tensile fracture surfaces shows that the clustered and coarse iron bearing intermetallic particles are responsible for the observed reduction in mechanical properties of the conventionally cast sheet. We have shown that by refining the initial microstructure of the ingot by intensive shear melt conditioning, it is possible to achieve improved mechanical properties at the final sheet gage of an AlMgMn alloy with a high content of impurities.This study is under the Technology Strategy Board funded REALCAR projec

    Sub-Heisenberg estimation of non-random phase-shifts

    Get PDF
    We provide evidence that the uncertainty in detection of small and deterministic phase-shift deviations from a working point can be lower than the Heisenberg bound, for fixed finite mean number of photons. We achieve that by exploiting non-linearity of estimators and coherence with the vacuum.Comment: Published version. Partially rewritten including further explanations and more numerical simulations. Updated reference

    High Temperature Macroscopic Entanglement

    Full text link
    In this paper I intend to show that macroscopic entanglement is possible at high temperatures. I analyze multipartite entanglement produced by the η\eta pairing mechanism which features strongly in the fermionic lattice models of high TcT_c superconductivity. This problem is shown to be equivalent to calculating multipartite entanglement in totally symmetric states of qubits. I demonstrate that we can conclusively calculate the relative entropy of entanglement within any subset of qubits in an overall symmetric state. Three main results then follow. First, I show that the condition for superconductivity, namely the existence of the off diagonal long range order (ODLRO), is not dependent on two-site entanglement, but on just classical correlations as the sites become more and more distant. Secondly, the entanglement that does survive in the thermodynamical limit is the entanglement of the total lattice and, at half filling, it scales with the log of the number of sites. It is this entanglement that will exist at temperatures below the superconducting critical temperature, which can currently be as high as 160 Kelvin. Thirdly, I prove that a complete mixture of symmetric states does not contain any entanglement in the macroscopic limit. On the other hand, the same mixture of symmetric states possesses the same two qubit entanglement features as the pure states involved, in the sense that the mixing does not destroy entanglement for finite number of qubits, albeit it does decrease it. Maximal mixing of symmetric states also does not destroy ODLRO and classical correlations. I discuss various other inequalities between different entanglements as well as generalizations to the subsystems of any dimensionality (i.e. higher than spin half).Comment: 14 pages, no figure

    Entanglement and Density Matrix of a Block of Spins in AKLT Model

    Full text link
    We study a 1-dimensional AKLT spin chain, consisting of spins SS in the bulk and S/2S/2 at both ends. The unique ground state of this AKLT model is described by the Valence-Bond-Solid (VBS) state. We investigate the density matrix of a contiguous block of bulk spins in this ground state. It is shown that the density matrix is a projector onto a subspace of dimension (S+1)2(S+1)^{2}. This subspace is described by non-zero eigenvalues and corresponding eigenvectors of the density matrix. We prove that for large block the von Neumann entropy coincides with Renyi entropy and is equal to ln(S+1)2\ln(S+1)^{2}.Comment: Revised version, typos corrected, references added, 31 page

    Processing of ultrafine-size particulate metal matrix composites by advanced shear technology

    Get PDF
    Copyright @ 2009 ASM International. This paper was published in Metallurgical & Materials Transactions A 40A(3) and is made available as an electronic reprint with the permission of ASM International. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or modification of the content of this paper are prohibited.Lack of efficient mixing technology to achieve a uniform distribution of fine-size reinforcement within the matrix and the high cost of producing components have hindered the widespread adaptation of particulate metal matrix composites (PMMCs) for engineering applications. A new rheo-processing method, the melt-conditioning high-pressure die-cast (MC-HPDC) process, has been developed for manufacturing near-net-shape components of high integrity. The MC-HPDC process adapts the well-established high shear dispersive mixing action of a twin-screw mechanism to the task of overcoming the cohesive force of the agglomerates under a high shear rate and high intensity of turbulence. This is followed by direct shaping of the slurry into near-net-shape components using an existing cold-chamber die-casting process. The results indicate that the MC-HPDC samples have a uniform distribution of ultrafine-sized SiC particles throughout the entire sample in the as-cast condition. Compared to those produced by conventional high-pressure die casting (HPDC), MC-HPDC samples have a much improved tensile strength and ductility.EP-SR

    Conditional linear-optical measurement schemes generate effective photon nonlinearities

    Full text link
    We provide a general approach for the analysis of optical state evolution under conditional measurement schemes, and identify the necessary and sufficient conditions for such schemes to simulate unitary evolution on the freely propagating modes. If such unitary evolution holds, an effective photon nonlinearity can be identified. Our analysis extends to conditional measurement schemes more general than those based solely on linear optics.Comment: 16 pages, 2 figure

    Multi-colour optical monitoring of eight red blazars

    Full text link
    We present the observational results of multi-colour optical monitoring of eight red blazars from 2003 September to 2004 February. The aim of our monitoring is to investigate the spectral variability as well as the flux variations at short and long time scales. The observations were carried out using the 1.0 m robotic telescope of Mt. Lemmon Optical Astronomy Observatory, in Arizona, USA, the 0.6 m telescope of Sobaeksan Optical Astronomy Observatory and the 1.8 m telescope of Bohyunsan Optical Astronomy Observatory, in the Republic of Korea. During the observations, all sources show strong flux variations with amplitudes of larger than 0.5 mag. Variations with amplitudes of over 1 mag are found in four sources. Intraday variations with amplitudes larger than 0.15 mag, and a rapid brightness increase with a rate of ~0.2 mag per day in four days, are detected in S5 0716+71. We investigate the relationship between the colour index and source brightness for each source. We find that two out of three FSRQs tend to be redder when they are brighter, and, conversely, all BL Lac objects tend to be bluer. In particular, we find a significant anti-correlation between the V-I colour index and R magnitude for 3C 454.3. This implies that the spectrum became steeper when the source was brighter, which is opposite to the common trend for blazars. In contrast, significant positive correlations are found in 3C 66A, S5 0716+71, and BL Lac. However, there are only very weak correlations for PKS 0735+17 and OJ 287. We propose that the different relative contributions of the thermal versus non-thermal radiation to the optical emission may be responsible for the different trends of the colour index with brightness in FSRQs and BL Lac objects.Comment: 15 pages, 12 figures. Accepted for publication in A&

    Enhanced Long-Path Electrical Conduction in ZnO Nanowire Array Devices Grown via Defect-Driven Nucleation

    Get PDF
    Vertical arrays of nanostructures have been widely used as major components in some of the most ground-breaking modern research-based devices, and ZnO nanowires have received particular attention because of their favorable electronic properties. Using a local multiprobe technique to measure the properties of individual ZnO nanowires in vertical arrays, we show for the first time that for metal-catalyzed ZnO nanowire growth the electrical contribution of individual wires to a device is highly dependent on the fate of the catalyst nanoparticle during growth. To overcome the limitations of metal-catalyzed growth, nanowires grown from a defect-driven nucleation process are shown to provide high-quality device structures with excellent long-path electrical conduction
    corecore