500 research outputs found

    Effects of annealing temperature on the characteristics of Ga-doped ZnO film metal-semiconductor-metal ultraviolet photodetectors

    Get PDF
    published_or_final_versio

    Effect of Broccoli Sprouts and Live Attenuated Influenza Virus on Peripheral Blood Natural Killer Cells: A Randomized, Double-Blind Study

    Get PDF
    Enhancing antiviral host defense responses through nutritional supplementation would be an attractive strategy in the fight against influenza. Using inoculation with live attenuated influenza virus (LAIV) as an infection model, we have recently shown that ingestion of sulforaphane-containing broccoli sprout homogenates (BSH) reduces markers of viral load in the nose. To investigate the systemic effects of short-term BSH supplementation in the context of LAIV-inoculation, we examined peripheral blood immune cell populations in non-smoking subjects from this study, with a particular focus on NK cells. We carried out a randomized, double-blinded, placebo-controlled study measuring the effects of BSH (N = 13) or placebo (alfalfa sprout homogenate, ASH; N = 16) on peripheral blood mononuclear cell responses to a standard nasal vaccine dose of LAIV in healthy volunteers. Blood was drawn prior to (day-1) and post (day2, day21) LAIV inoculation and analyzed for neutrophils, monocytes, macrophages, T cells, NKT cells, and NK cells. In addition, NK cells were enriched, stimulated, and assessed for surface markers, intracellular markers, and cytotoxic potential by flow cytometry. Overall, LAIV significantly reduced NKT (day2 and day21) and T cell (day2) populations. LAIV decreased NK cell CD56 and CD158b expression, while significantly increasing CD16 expression and cytotoxic potential (on day2). BSH supplementation further increased LAIV-induced granzyme B production (day2) in NK cells compared to ASH and in the BSH group granzyme B levels appeared to be negatively associated with influenza RNA levels in nasal lavage fluid cells. We conclude that nasal influenza infection may induce complex changes in peripheral blood NK cell activation, and that BSH increases virus-induced peripheral blood NK cell granzyme B production, an effect that may be important for enhanced antiviral defense responses

    Expression of CDX2 and Hepatocyte Antigen in Benign and Malignant Lesions of Gallbladder and Its Correlation with Histopathologic Type and Clinical Outcome

    Get PDF
    Recent studies have shown that both CDX2 and Hepatocyte antigen (Hep) are detected in different types of cancer and associated with clinical prognosis. However, fever studies have examined gallbladder cancer specimens, and little is known about the clinicopathological significance of both CDX2 and Hep expression in gallbladder adenocarcinomas. In present study, we examined the expression frequencies of CDX2 and Hepatocyte antigen (Hep), and explored their clinicopathologic significances in gallbladder adenocarcinoma. Immunohistochemistry was used to detect and compare the frequencies of CDX2 and Hep expression in 108 samples of gallbladder adenocarcinoma, 46 peri-tumor tissues and 35 chronic cholecystitis. The expression frequencies for CDX2 and Hep were 49/108 (45.4%) and 45/108 (41.7%) in gallbladder carcinoma; 13/46 (28.3%) and 11/46 (23.9) in peri-tumor tissues; 5/35 (14.3%) and 2/35 (5.7%) in chronic cholecystitis. The positive staining of CDX2 or Hep in gallbladder adenocarcinoma was significantly higher than that in peritumoral tissues (both, P < 0.05), and chronic cholecystits (both, P < 0.01). The expression of CDX2 or Hep was negatively correlated to grade of differentiation, tumor size and lymph node metastasis (P < 0.01 or P < 0.05). Elevated expression frequency of CDX2 or Hep was associated with increased overall survival (P = 0.003 or P = 0.002). Multivariate Cox regression analysis showed that CDX2 (P = 0.014) or Hep (P = 0.026) expression was an independent prognostic predictor in gallbladder adenocarcinoma. CDX2 and Hep might function as important biological markers in the development and prognosis of gallbladder adenocarcinoma

    Five biopsy specimens from the proximal part of the tumor reliably determine HER2 protein expression status in gastric cancer

    Get PDF
    Background: National guidelines recommend trastuzumab for treatment of patients with metastatic HER2-positive gastric cancer (GC). There is currently no guideline indicating the number of biopsy specimens and the location from which they should be obtained to reliably determine the human epidermal growth factor receptor 2 (HER2) status in GC. The aim of this pilot study was (a) to quantify HER2-positive tumor cells in different tumor regions to assess the spatial heterogeneity of HER2 expression and (b) to establish the required number of biopsy specimens and the location from which they should be obtained within the tumor to achieve concordance between HER2 expression status in the biopsy specimens and the resection specimen. Methods: HER2 expression was quantified in six different regions of 24 HER2-positive GC and in six virtual biopsy specimens from different luminal regions. Intratumoral regional heterogeneity and concordance between HER2 status in the biopsy specimens and the resection specimen were analyzed. Results: HER2-positive cells were more frequent in the luminal tumor surface compared with deeper layers (p < 0.001). GCs with differentiated histological features were more commonly HER2 positive (p < 0.001). Assessment of HER2 expression status in five biopsy specimens was sufficient to achieve 100 % concordance between the biopsy specimens and the resection specimen. Conclusions: This is the first study to suggest preferential HER2 positivity at the luminal surface in GC and to establish a minimum number of biopsy specimens needed to obtain a biopsy HER2 result which is identical to that from the whole tumor. Our study suggests that HER2 testing in five tumor-containing endoscopic biopsy specimens from the proximal (oral) part of the tumor is advisable. The results from this pilot study require validation in a prospective study

    HSPB1, HSPB6, HSPB7 and HSPB8 Protect against RhoA GTPase-Induced Remodeling in Tachypaced Atrial Myocytes

    Get PDF
    BACKGROUND: We previously demonstrated the small heat shock protein, HSPB1, to prevent tachycardia remodeling in in vitro and in vivo models for Atrial Fibrillation (AF). To gain insight into its mechanism of action, we examined the protective effect of all 10 members of the HSPB family on tachycardia remodeling. Furthermore, modulating effects of HSPB on RhoA GTPase activity and F-actin stress fiber formation were examined, as this pathway was found of prime importance in tachycardia remodeling events and the initiation of AF. METHODS AND RESULTS: Tachypacing (4 Hz) of HL-1 atrial myocytes significantly and progressively reduced the amplitude of Ca²⁺ transients (CaT). In addition to HSPB1, also overexpression of HSPB6, HSPB7 and HSPB8 protected against tachypacing-induced CaT reduction. The protective effect was independent of HSPB1. Moreover, tachypacing induced RhoA GTPase activity and caused F-actin stress fiber formation. The ROCK inhibitor Y27632 significantly prevented tachypacing-induced F-actin formation and CaT reductions, showing that RhoA activation is required for remodeling. Although all protective HSPB members prevented the formation of F-actin stress fibers, their mode of action differs. Whilst HSPB1, HSPB6 and HSPB7 acted via direct prevention of F-actin formation, HSPB8-protection was mediated via inhibition of RhoA GTPase activity. CONCLUSION: Overexpression of HSPB1, as well as HSPB6, HSPB7 and HSPB8 independently protect against tachycardia remodeling by attenuation of the RhoA GTPase pathway at different levels. The cardioprotective role for multiple HSPB members indicate a possible therapeutic benefit of compounds able to boost the expression of single or multiple members of the HSPB family

    Changes in symptom clusters in patients undergoing radiation therapy

    Get PDF
    The goals of the study were to determine the occurrence rates for and the severity of symptoms at the middle, end, and 1 month after the completion of radiation therapy (RT), to determine the number and types of symptom clusters at these three time points, and to evaluate for changes over time in these symptom clusters. Symptom occurrence and severity were evaluated using the Memorial Symptom Assessment Scale (MSAS) in a sample of patients (n = 160) who underwent RT for breast or prostate cancer. At each time point, an exploratory factor analysis was done to determine the number of symptom clusters (i.e., symptom factors) based on the MSAS symptom severity ratings. The majority of the patients were male and married with a mean age of 61.1 years. The five symptoms with the highest occurrence rates across all three time points were lack of energy, pain, difficulty sleeping, feeling drowsy, and sweats. Although the number of symptoms and the specific symptoms within each symptom cluster were not identical across the three time points, three relatively similar symptom clusters (i.e., “mood-cognitive” symptom cluster, “sickness-behavior” symptom cluster, “treatment-related”, or “pain” symptom cluster) were identified in this sample. The internal consistency coefficients for the mood-cognitive symptom cluster and sickness-behavior symptom cluster were adequate at ≥0.68. Three relatively stable symptom clusters were found across RT. The majority of the symptom cluster severity scores were significantly higher in patients with breast cancer compared to patients with prostate cancer

    Shape-Controlled Synthesis of ZnS Nanostructures: A Simple and Rapid Method for One-Dimensional Materials by Plasma

    Get PDF
    In this paper, ZnS one-dimensional (1D) nanostructures including tetrapods, nanorods, nanobelts, and nanoslices were selectively synthesized by using RF thermal plasma in a wall-free way. The feeding rate and the cooling flow rate were the critical experimental parameters for defining the morphology of the final products. The detailed structures of synthesized ZnS nanostructures were studied through transmission electron microscope, X-ray diffraction, and high-resolution transmission electron microscope. A collision-controlled growth mechanism was proposed to explain the growth process that occurred exclusively in the gas current by a flowing way, and the whole process was completed in several seconds. In conclusion, the present synthetic route provides a facile way to synthesize ZnS and other hexagonal-structured 1D nanostructures in a rapid and scalable way

    The Effects of Puerarin on Rat Ventricular Myocytes and the Potential Mechanism

    Get PDF
    Puerarin, a known isoflavone, is commonly found as a Chinese herb medicine. It is widely used in China to treat cardiac diseases such as angina, cardiac infarction and arrhythmia. However, its cardioprotective mechanism remains unclear. In this study, puerarin significantly prolonged ventricular action potential duration (APD) with a dosage dependent manner in the micromolar range on isolated rat ventricular myocytes. However, submicromolar puerarin had no effect on resting membrane potential (RMP), action potential amplitude (APA) and maximal velocity of depolarization (Vmax) of action potential. Only above the concentration of 10 mM, puerarin exhibited more aggressive effect on action potential, and shifted RMP to the positive direction. Millimolar concentrations of puerarin significantly inhibited inward rectified K+ channels in a dosage dependent manner, and exhibited bigger effects upon Kir2.1 vs Kir2.3 in transfected HEK293 cells. As low as micromolar range concentrations of puerarin significantly inhibited Kv7.1 and IKs. These inhibitory effects may due to the direct inhibition of puerarin upon channels not via the PKA-dependent pathway. These results provided direct preclinical evidence that puerarin prolonged APD via its inhibitory effect upon Kv7.1 and IKs, contributing to a better understanding the mechanism of puerarin cardioprotection in the treatment of cardiovascular diseases

    A highly efficient green synthesis of 1, 8-dioxo-octahydroxanthenes

    Get PDF
    SmCl3 (20 mol%) has been used as an efficient catalyst for reaction between aromatic aldehydes and 5,5-dimethyl-1,3-cyclohexanedione at 120°C to give 1,8-dioxo-octahydroxanthene derivatives in high yield. The same reaction in water, at room temperature gave only the open chain analogue of 1,8-dioxo-octahydroxanthene. Use of eco-friendly green Lewis acid, readily available catalyst and easy isolation of the product makes this a convenient method for the synthesis of either of the products
    corecore