75 research outputs found

    A multi-wavelength mid-IR laser based on BaGa4Se7 optical parametric oscillators

    Get PDF
    A multi-wavelength mid-IR laser consisting of 3.05 μm, 4.25 μm, and 5.47 μm BaGa4Se7(BGSe)optical parametric oscillators (OPOs) switched by DKDP electro-optic switches with one 10 Hz/7.6 ns pumping wave is demonstrated. Maximum energies at 3.05 μm, 4.25 μm, and 5.47 μm are 1.35 mJ, 1.03 mJ, and 0.56 mJ, respectively, corresponding to optical-to-optical conversion efficiencies of 9.4%, 7.6%, and 4.2%. To the best of our knowledge, this study is the first of generation of three mid-IR wavelength lasers using electro-optic switches. Furthermore, this study provides a viable solution for a high-energy or high-power, compact, or even portable multi-wavelength mid-IR laser device that employs a single pumping wave

    An Overview of Recent Development in Composite Catalysts from Porous Materials for Various Reactions and Processes

    Get PDF
    Catalysts are important to the chemical industry and environmental remediation due to their effective conversion of one chemical into another. Among them, composite catalysts have attracted continuous attention during the past decades. Nowadays, composite catalysts are being used more and more to meet the practical catalytic performance requirements in the chemical industry of high activity, high selectivity and good stability. In this paper, we reviewed our recent work on development of composite catalysts, mainly focusing on the composite catalysts obtained from porous materials such as zeolites, mesoporous materials, carbon nanotubes (CNT), etc. Six types of porous composite catalysts are discussed, including amorphous oxide modified zeolite composite catalysts, zeolite composites prepared by co-crystallization or overgrowth, hierarchical porous catalysts, host-guest porous composites, inorganic and organic mesoporous composite catalysts, and polymer/CNT composite catalysts

    Base-scale entropy and energy analysis of flow characteristics of the two-phase flow

    No full text
    In this paper, the base-scale entropy and root mean square energy analysis method are combined to present a simple and quick strategy to extract the features of the gas–liquid two-phase flow and to characterize the different flow patterns. In order to verify the effectiveness of the extracted features, we calculate their separability measure values. The experimental results show that the combined strategy proposed in this paper can not only distinguish the different flow patterns but also complement each other

    Experimental and Numerical Study of the Failure Behavior of Intermittent Rock Joints Subjected to Direct Shear Load

    No full text
    Two series of intermittent rock joints containing three joints arranged along the central shear axis were considered in this study. The failure behavior under direct shear loads was investigated by means of both physical tests and numerical simulations. The cracking behavior was found to be distinctly associated with the joint arrangement. Several types of main and secondary cracks were identified. The variation trends of the crack initiation stress ratio with inclination angle were analyzed and found to be partly different for the two series of intermittent joints. The whole fracturing process was characterized by three phases. Not all samples have to experience all three phases. The second phase is alternative and can be reflected by the shearing curve. Hence, two types of shearing curves, including single and double peaks, were identified. The double peak is due to the extrusion or sawteeth cutting in the second phase. Moreover, the numerical micromechanical analysis was performed to explain the shear behavior using the contact force and microcrack within the specimen. Based on the numerically measured local stresses, maximum and minimum principal stresses around the middle joint at crack initiation stress and peak shear stress were analyzed

    Cracking and Failure in Rock Specimen Containing Combined Flaw and Hole under Uniaxial Compression

    No full text
    Flaw is a key factor influencing failure behavior of a fractured specimen. In the present study, rectangular-flawed specimens were prepared using sandstone to investigate the effect of flaw on failure behavior of rock. Open flaw and cylindrical hole were simultaneously precut within rock specimens using high-pressure water jet cutting technology. Five series of specimens including intact, single-hole-alone, two-hole-alone, single-hole and two-flaw, and two-hole and single-flaw blocks were prepared. Uniaxial compressive tests using a rigid servo control instrument were carried out to investigate the fracture processes of these flawed specimens. It is observed that during loading, internal stress always intensively distributed at both sidewalls of open hole, especially at midpoint of sidewalls, so rock crumb flaking was firstly observed among all sandstone specimens containing single hole or two holes. Cracking around open hole is associated with the flaw inclination angle which was observed in Series III and V. Crack easily initiated at the tips of flaw with inclination angles of 0°, 30°, and 60° but hard for 90° in Series III and V. Rock burst was the major failure mode among most tested specimens, which generally induced new cracks and finally created crater shape. Additionally, due to extrusion between blocks, new shear or tensile cracks were generated and the rock specimen surface spalled. Eventually, four typical failure processes including rock crumb flaking, crack initiation and propagation, rock burst, and second rupture, were summarized

    Stability Assessment of Tunnels Excavated in Loess with the Presence of Groundwater—A Case Study

    No full text
    The high water content of the surrounding rock in loess tunnels will lead to the deterioration of rock strength, causing deformation and damage to the initial support structure and thereby affecting safety during construction and operation. This article first analyzes the strength characteristics of loess under different water contents through indoor physical and mechanical tests. Secondly, based on numerical simulation results, the ecological environment, and design requirements, the water content threshold is determined. Finally, a reinforcement scheme combining surface precipitation measures and curtain grouting measures is proposed, and the reinforcement effect is analyzed based on on-site monitoring data. The results show that as the water content of loess increases, the cohesion, internal friction angle, and elastic modulus of the surrounding rock all decrease, leading to an increase in the sensitivity of the surrounding rock to excavation disturbances and a deterioration in strength. During the construction process, it shows an increase in the vault settlement and sidewalls’ convergence. During the process of increasing the distance between the monitoring section and the palm face, the settlement and convergence of the tunnel show a rapid growth stage, slow growth stage, and stable stage. The water content threshold is determined to be 22%. The reinforcement scheme of combining surface precipitation measures with curtain grouting measures not only meets the requirements of the ecological environment but also makes the settlement and convergence values lower than the yellow warning deformation values required by the design

    Ordered array of gold semishells on TiO2 spheres : an ultrasensitive and recyclable SERS substrate

    No full text
    Ordered array of Au semishells on TiO2 spheres with controlled size are prepared by combining the nanosphere self-assembly and atomic layer deposition (ALD). This ordered 2-D structure with designed array of metal nanogaps can be used as an ultrasensitive surface-enhanced Raman scattering (SERS) substrate with high reproducibility and stability. More importantly, the SERS substrates are recyclable, as enabled by their self-cleaning function due to the TiO2 photocatalytic degradation of the target molecules. The high SERS sensitivity and recyclability are demonstrated by the detection of Rhodamine 6G (R6G) and brilliant cresyl blue (BCB) molecules. As both the nanosphere lithography and ALD are scalable processes, such 2-D ordered substrates may find applications in chemical sensing
    corecore