145 research outputs found

    A review of shale pore structure evolution characteristics with increasing thermal maturities

    Get PDF
       Pore structure has a significant effect on the occurrence state of shale hydrocarbons and the hydrocarbon storage capability of shale reservoirs. Consequently, it is quite meaningful to clarify the shale pore structure evolution characteristics for understanding the migration and enrichment mechanisms of hydrocarbons within shale reservoirs during different geological stages. The abundant existence of organic matter within shales complicates the shale pore structure evolution process by hydrocarbon generation, migration and cracking. Many studies have been conducted to reveal the shale pore structure evolution characteristics and the controlling factors. Basically, these studies could be divided into two categories based on the sample source: comparing the pore structure of natural shale samples with different thermal maturities; obtaining shale samples with different thermal maturities by conducting thermal simulation experiments on low-mature shale samples and comparing the pore structure of these simulated shale samples. However, no consistent viewpoint on shale pore structure evolution has been reached. This review presents the state of the art of shale pore structure evolution studies. It is widely recognized in the literature that both the inorganic and organic diagenesis control the shale pore structure evolution process. However, it is found that the shale pore structure evolution models proposed in the literature were largely dependent on the samples used. And it is recommended to conduct the two categories of studies simultaneously in order to obtain more reliable shale pore structure evolution characteristics in future investigations.Cited as: Gao, Z., Fan, Y., Xuan, Q., Zheng, G. A review of shale pore structure evolution characteristics with increasing thermal maturities. Advances in Geo-Energy Research, 2020, 4(3): 247-259, doi: 10.46690/ager.2020.03.0

    Largely tunable band structures of few-layer InSe by uniaxial strain

    Full text link
    Due to the strong quantum confinement effect, few-layer {\gamma}-InSe exhibits a layer-dependent bandgap, spanning the visible and near infrared regions, and thus recently draws tremendous attention. As a two-dimensional material, the mechanical flexibility provides an additional tuning knob for the electronic structure. Here, for the first time, we engineer the band structures of few-layer and bulk-like InSe by uniaxial tensile strain, and observe salient shift of photoluminescence (PL) peaks. The shift rate of the optical gap is approximately 90-100 meV per 1% strain for 4- to 8-layer samples, which is much larger than that for the widely studied MoS2 monolayer. Density functional calculations well reproduce the observed layer-dependent bandgaps and the strain effect, and reveal that the shift rate decreases with increasing layer number for few-layer InSe. Our study demonstrates that InSe is a very versatile 2D electronic and optoelectronic material, which is suitable for tunable light emitters, photo-detectors and other optoelectronic devices.Comment: submitte

    Water sorptivity of unsaturated fractured sandstone: fractal modeling and neutron radiography experiment

    Get PDF
    The spontaneous imbibition of water into the matrix and gas-filled fractures of unsaturated porous media is an important phenomenon in many geotechnical applications. Previous studies have focused on the imbibition behavior of water in the matrix, but few works have considered spontaneous imbibition along fractures. In this work, a new fractal model, considering the water losses from the fracture to the matrix, was established to predict the sorptivity of rough-walled fracture. A fractal model, considering the fractal dimension of tortuosity, was modified to estimate the sorptivity of the matrix. Both of the models have a time exponent α and can be simplified to the classical Lucas–Washburn (L–W) equation with α = 0.50. To verify the proposed models, quantitative data on the imbibition of water in both the matrix and the fracture of unsaturated sandstone were acquired by neutron radiography. The results show that the motion of the wetting front in both the matrix and the fracture does not obey the L–W equation. Both theory and experimental observations indicate that fracture can significantly increase spontaneous imbibition in unsaturated sandstone by capillary action. Compared with the classical L–W equation, the models proposed in this study offers a better description of the dynamic imbibition behaviour of water in unsaturated fractured sandstone and, thus, more reliable predictions of the sorptivity of the matrix and the fracture. Moreover, a new method to estimate the time exponent of rough-walled fracture in sandstone was also provided

    In situ modification of delafossite-type PdCoO2 bulk single crystal for reversible hydrogen sorption and fast hydrogen evolution

    Get PDF
    This work was financially supported by the European Research Council (ERC Advanced Grant No. 291472 'Idea Heusler') and ERC Advanced Grant (No. 742068). TOPMAT’. Electron Microscopy (C.C., D.M.) supported by the U.S. Department of Energy, Basic Energy Sciences grant No. DE-SC0019445, with facility support from the National Science Foundation NSF Grant No. DMR-1719875.The observation of extraordinarily high conductivity in delafossite-type PdCoO2 is of great current interest, and there is some evidence that electrons behave like a fluid when flowing in bulk crystals of PdCoO2. Thus, this material is an ideal platform for the study of the electron transfer processes in heterogeneous reactions. Here, we report the use of bulk single crystal PdCoO2 as a promising electrocatalyst for hydrogen evolution reactions (HERs). An overpotential of only 31 mV results in a current density of 10 mA cm-2, accompanied by excellent long-term stability. We have precisely determined that the crystal surface structure is modified after electrochemical activation with the formation of strained Pd nanoclusters in the surface layer. These nanoclusters exhibit excellent hydrogen sorption/desorption reversibility, creating more active sites for hydrogen access. The bulk PdCoO2 single crystal with ultra-high conductivity, which acts as a natural substrate for the Pd nanoclusters, provides a high-speed channel for electron transfer.Publisher PDFPeer reviewe

    Potent Neutralization of Influenza A Virus by a Single-Domain Antibody Blocking M2 Ion Channel Protein

    Get PDF
    Influenza A virus poses serious health threat to humans. Neutralizing antibodies against the highly conserved M2 ion channel is thought to offer broad protection against influenza A viruses. Here, we screened synthetic Camel single-domain antibody (VHH) libraries against native M2 ion channel protein. One of the isolated VHHs, M2-7A, specifically bound to M2-expressed cell membrane as well as influenza A virion, inhibited replication of both amantadine-sensitive and resistant influenza A viruses in vitro, and protected mice from a lethal influenza virus challenge. Moreover, M2-7A showed blocking activity for proton influx through M2 ion channel. These pieces of evidence collectively demonstrate for the first time that a neutralizing antibody against M2 with broad specificity is achievable, and M2-7A may have potential for cross protection against a number of variants and subtypes of influenza A viruses

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore