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Abstract
This paper deals with the sub-supersolution method for the p(x)-Kirchhoff type
equations. A sub-supersolution principle for the Dirichlet problems involving
p(x)-Kirchhoff is established. A strong comparison theorem for the p(x)-Kirchhoff type
equations is presented. We also give some applications of the abstract theorems
obtained in this paper to the eigenvalue problems for the p(x)-Kirchhoff type
equation.
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1 Introduction
In this paper, we study the following problem:

⎧⎨
⎩–M(t)div(|∇u|p(x)–∇u) = f (x,u) in �,

u =  on ∂�,
(.)

where � is a bounded smooth domain in R
N with N ≥ , p = p(x) ∈ C(�) with  < p– :=

inf� p(x) ≤ p+ := sup� p(x) < +∞, f ∈ C(� × R,R), M(t) is a continuous function with
t :=

∫
�


p(x) |∇u|p(x) dx and satisfies the following condition:

(M) M : [, +∞)→ (m, +∞) is a continuous and increasing function withm > .

The operator –div(|∇u|p(x)–∇u) is said to be p(x)-Laplacian. The study of variousmath-
ematical problems with the variable exponent growth condition has received considerable
attention in recent years. These problems are interesting in applications and raise many
difficult mathematical problems. We refer the reader to [] for an overview of and refer-
ences on this subject.
The solvability of the problem (.) can be studied by several approaches; for example,

the variational method (see, e.g., []). It is well known that, compared with other meth-
ods, the sub-supersolution method, or the order method, when it is applicable, has some
distinctive advantages. For example, it usually gives some order properties of the solu-
tions. For the applications of the sub-supersolution method to semilinear and quasilinear
elliptic problems, we refer to [, ] and the references therein. In [], Fan established a
sub-supersolution principle for Dirichlet problems involving p(x)-Laplacian and a strong
comparison theorem for p(x)-Laplacian equations. The goal of this paper is to study the
sub-supersolution method for (.), which is a new research topic.

© 2012 Han and Dai; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons At-
tribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192854239?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.journalofinequalitiesandapplications.com/content/2012/1/283
mailto:daiguowei@nwnu.edu.cn
http://creativecommons.org/licenses/by/2.0


Han and Dai Journal of Inequalities and Applications 2012, 2012:283 Page 2 of 11
http://www.journalofinequalitiesandapplications.com/content/2012/1/283

The problem (.) is related to the stationary problem of a model introduced by Kirch-
hoff []. We refer the reader to [] for an overview of and references on this subject.
In [], the sub-supersolution principle for p(x)-Laplacian equations established by Fan

is based on the properties of p(x)-Laplace, the regularity results and the comparison prin-
ciple. The aim of the present paper is to establish a sub-supersolution principle for p(x)-
Kirchhoff equations.
The rest of this paper is organized as follows. In Section , we establish a general princi-

ple of the sub-supersolution method for the problem (.) based on the regularity results
and the comparison principle. In Section , we give a special strong comparison principle
for the p(x)-Kirchhoff. In Section , we give an application of our abstract theorems.

2 Sub-supersolution principle
In this section, we give a general principle of sub-supersolution method for the problem
(.) based on the regularity results and the comparison principle. We would like to point
out that the comparison principle in this section (see Theorem .) is a generalization of
Proposition . of []. In addition to the principle of sub-supersolution, we shall establish
also a generalization of Theorem . of []. For simplicity, we write X =W ,p(x)

 (�).

Definition . () We say that u ∈ X is a weak solution of (.) if

M
(∫

�


p(x)

|∇u|p(x) dx
)∫

�

|∇u|p(x)–∇u∇ϕ dx =
∫

�

f (x,u)ϕ dx

for any ϕ ∈ X.
() u ∈ W ,p(x) is called a subsolution (respectively a supersolution) of (.) if u ≤

(respectively ≥)  on ∂� and, for all ϕ ∈ X with ϕ ≥ ,

M
(∫

�


p(x)

|∇u|p(x) dx
)∫

�

|∇u|p(x)–∇u∇ϕ dx≤ (respectively ≥)
∫

�

f (x,u)ϕ dx.

Regularity results and comparison principles are the basis of the sub-supersolution
method. For the regularity results in the variable exponent case, see [–]. More precisely,
for the L∞ and C,α regularity, see []; for the local C,α regularity of the minimizers of the
corresponding integral functional, see []; for the global C,α regularity, see [].
If f is independent of u, we have

Theorem . If (M) holds and f (x,u) = f (x), f ∈ L
q(x)

q(x)– (�), then (.) has a unique weak
solution.

Proof Clearly, (f , v) :=
∫
�
f (x)vdx (for any v ∈ X) defines a continuous linear functional

on X. According to Theorem . of [], �′ is a homeomorphism. So, (.) has a unique
solution, where �(u) = M̂(

∫
�


p(x) |∇u|p(x) dx). �

From Theorem . we know that, for a given h ∈ L
q(x)

q(x)– (�), where q ∈ C+(�) and

 < q(x) < p*(x), ∀x ∈ �, (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/283
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the problem

⎧⎨
⎩–M(t)div(|∇u|p(x)–∇u) = h(x) in �,

u =  on ∂�
(.)

has a unique solution u ∈ X under the condition (M). We denote by K(h) := u the unique
solution. K is called a solution operator for (.).
From the regularity results and the embedding theorems, we can obtain the properties

of the solution operator K as follows.

Proposition . () If (M) holds, the mapping K : L
q(x)

q(x)– (�) → X is continuous and

bounded. Moreover, the mapping K : L
q(x)

q(x)– (�) ↪→ Lq(x)(�) is completely continuous since
the embedding X ↪→ Lq(x)(�) is compact.
() If (M) holds and p is log-Hölder continuous on �, then the mapping K : L∞(�) →

C,α(�) is bounded, and hence the mapping K : L∞(�) → C(�) is completely continuous.
() If (M) holds and p isHölder continuous on�, then themapping K : L∞(�)→ C,α(�)

is bounded, and hence the mapping K : L∞(�)→ C(�) is completely continuous.

Definition . Let u, v ∈W ,p(x)(�). We say that –M(I(u))�p(x)(u) ≤ –M(I(v))�p(x)(v) if
for all ϕ ∈ X with ϕ ≥ ,

M
(
I(u)

)∫
�

|∇u|p(x)–∇u∇ϕ dx ≤ M
(
I(v)

)∫
�

|∇v|p(x)–∇v∇ϕ dx, (.)

where I(u) =
∫
�


p(x) |∇u|p(x) dx.

Now we give the comparison principle as follows.

Theorem . () Let u, v ∈ W ,p(x)(�) and (M) hold. If –M(I(u))�p(x)(u) ≤ –M(I(v))×
�p(x)(v) and (u – v)+ ∈W ,p(x)

 (�), then u ≤ v in �.
() Under the conditions of () above, let in addition u, v ∈ C(�) and denote S = {x ∈ � :

u(x) = v(x)}. If S is a compact subset of �, then S = ∅.

Proof () Taking λ =  in the proof of Theorem . of [], we can get the conclusion.
() Suppose that S is a compact subset of � and S �= ∅. Then there is an open subset �

of � such that S ⊂ � ⊂ � ⊂ �. Thus u < v on ∂� and consequently there is an ε > 
such that u < v– ε on ∂�. Noting that ∇(v– ε) = ∇v and applying the conclusion () to u
and v – ε on �, we obtain u≤ v – ε in �, which contradicts u = v on S. �

It follows fromTheorem .() that the solution operator K is increasing under the con-
dition (M), that is, K(u) ≤ K(v) if u ≤ v. We define T(u) = K(f (x,u)). It is easy to see
that if u is a subsolution (respectively a supersolution) of (.), then u≤ T(u) (respectively
u≥ T(u)), and u is a solution of (.) if and only if u = T(u), i.e., u is a fixed point of T .
The basic principle of the sub-supersolution method for (.) is the following result.

Theorem . Let (M) hold and suppose that f satisfies the sub-critical growth condition

∣∣f (x, t)∣∣ ≤ c + c|t|q(x)–, ∀x ∈ �,∀t ∈R,

http://www.journalofinequalitiesandapplications.com/content/2012/1/283


Han and Dai Journal of Inequalities and Applications 2012, 2012:283 Page 4 of 11
http://www.journalofinequalitiesandapplications.com/content/2012/1/283

and the function f (x, t) is nondecreasing in t ∈R. If there exist a subsolution u ∈ W ,p(x)(�)
and a supersolution v ∈ W ,p(x)(�) of (.) such that u ≤ v, then (.) has a minimal
solution u* and a maximal solution v* in the order interval [u, v], i.e., u ≤ u* ≤ v* ≤ v

and if u is any solution of (.) such that u ≤ u≤ v, then u* ≤ u≤ v*.

Proof Define T(u) = K(f (x,u)). Then, under the assumptions of Theorem ., T :
Lq(x)(�) → Lq(x)(�) is completely continuous and increasing, u ≤ v, u, v ∈ Lq(x)(�),
u ≤ T(u), v ≥ T(v), and consequently T : [u, v] → [u, v]. It is clear that the cone of
all nonnegative functions in Lq(x)(�) is normal. Noting the minimal (maximal) fixed point
(see []) of T is the minimal (maximal) solution of (.), so our Theorem . now follows
by applying the well-known fixed point theorem for the increasing operator on the order
interval (see, e.g., []). �

In the practical problems, it is often known that the subsolution u and the supersolution
v are of class L∞(�), so the restriction on the growth condition of f is needless. Hence,
the following theorem is more suitable.

Theorem . Let (M) hold and suppose that u, v ∈ W ,p(x)(�)∩L∞(�), u and v are a
subsolution and a supersolution of (.) respectively, and u ≤ v. If f ∈ C(�×R,R) satisfies
the condition

(F) f (x, t) is nondecreasing in t ∈ [
infu(x), sup v(x)

]
,

then the conclusion of Theorem . is valid.

The above results show that the general principle of the sub-supersolution method for
p(x)-Kirchhoff type equations (.) is of the same type as in the case of p(x)-Laplacian type
equations. An essential prerequisite for the sub-supersolutionmethod is to find a subsolu-
tion u and a supersolution v such that u ≤ v. It is well known that the homogeneity of
the p-Laplacian operator and the positivity of the first eigenvalue of p-Laplacian Dirichlet
problem play an important role in finding sub- and supersolutions of the p-Laplacian
equation []. Unlike the p-Laplacian, when p(x) is not identical with a constant, the
p(x)-Laplacian operator is inhomogeneous and usually the infimum of its eigenvalues is
. It is obvious that the eigenvalues of (.) are μj =M(

∫
�


p(x) |∇ϕj|p(x) dx)λj, where λj and

ϕj are, respectively, the eigenvalues and eigenfunctions of –�p(x) in X. Thus, usually, the
infimum of μj is also . Therefore, it is often difficult to find a subsolution u and a super-
solution v of (.) with u ≤ v.
At the end of this section, we give a lemma which is useful to find a supersolution of

(.). We denote by C the best embedding constant ofW ,
 (�) ⊂ L

N
N– (�).

Lemma . Let (M) hold,M >  and let u be the unique solution of the problem

⎧⎨
⎩–M(t)div(|∇u|p(x)–∇u) =M in �,

u =  on ∂�.
(.)

Set h = mp–
|�|/NC

. Then, when M ≥ h, |u|∞ ≤ C*M/(p––), and when M < h, |u|∞ ≤
C*M/(p+–),where C* andC* are positive constants depending on p+, p–,N , |�|,C andm.

http://www.journalofinequalitiesandapplications.com/content/2012/1/283
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Proof Let u be the solution of (.), Theorem . implies u ≥ . For k ≥ , set Ak = {x ∈
� : u(x) > k}. Taking (u – k)+ as a test function in (.) and using the Young inequality, we
have

∫
Ak

|∇u|p(x) dx =
M
M(t)

∫
Ak

(u – k)dx

≤ M|�|/NC

mp–

∫
Ak

εp(x)|∇u|p(x) dx + M|Ak|/NC

m(p+)′

∫
Ak

ε–p
′(x) dx. (.)

WhenM≥ h, taking

ε =
(

mp–

M|�|/NC

)/p–

=
(

h
M

)/p–

,

then ε ≤  and

M|�|/NC

mp–

∫
Ak

εp(x)|∇u|p(x) dx ≤ M|�|/NC

mp–
εp

–
∫
Ak

|∇u|p(x) dx = 


∫
Ak

|∇u|p(x) dx.

Consequently, from this and (.), it follows that

∫
Ak

|∇u|p(x) dx ≤ M|Ak|/NC

m(p+)′

∫
Ak

ε–p
′(x) dx ≤ MCε

–(p–)′

m(p+)′
|Ak|+/N . (.)

From (.) and (.), we have

∫
Ak

(u – k)dx =
M(t)
M

∫
Ak

|∇u|p(x) dx

≤ M
(
MCε

–(p–)′

p–m(p+)′
|�|+/N

)
Cε

–(p–)′

m(p+)′
|Ak|+/N . (.)

By Lemma . in [, Chapter ], (.) implies that

|u|∞ ≤ γ (N + )|�|/N , (.)

where γ =M( MCε–(p
–)′

p–m(p+)′ |�|+/N ) Cε–(p
–)′

m(p+)′ . From (.) and (.), we obtain

|u|∞ ≤ C*M/(p––),

where

C* =
(N + )(C)(p

–)′

(p+)′m(p–)′
 (p–)(p–)′/p–

|�|(p–)′/NM
(

(MC)(p
–)′

p–(p+)′m(p–)′
 (p–)(p–)′/p–

|�|(p–)′/N
)
.

WhenM < h, taking

ε =
(

mp–

M|�|/NC

)/p+

=
(

h
M

)/p+

http://www.journalofinequalitiesandapplications.com/content/2012/1/283
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(noting that in this case ε > ) and using arguments similar to those above, we can obtain

|u|∞ ≤ C*M/(p+–),

where

C* =
(N + )(C)(p

+)′

(p+)′m(p+)′
 (p–)(p+)′/p+

|�|(p+)′/NM
(

(MC)(p
+)′

p–(p+)′m(p+)′
 (p–)(p+)′/p+

|�|(p+)′/N
)
.

The proof is complete. �

Remark . Wewould like to point out that the fact that a solution of (.) is bounded in
L∞(�) is useful for finding a supersolution of (.). Indeed, the fact can be used to estimate
the relation of nonlinearity andM (for details, see the proof of Theorem .).

3 A strong comparison principle for p(x)-Kirchhoff problem
The energy functional associated with the problem (.) is

J(u) = M̂
(
I(u)

)
–

∫
�

F(x,u)dx,

where M̂(t) =
∫ t
 M(τ )dτ and F(x,u) =

∫ u
 f (x, t)dt. In this section, we give a special strong

comparison principle for the p(x)-Kirchhoff, which is suitable for finding a positive C

local minimizer of the integral functional J in the C topology. In [], Fan established a
Brezis-Nirenberg type theorem (Theorem . of []), which asserts that every local min-
imizer of J in the C(�) topology is also a local minimizer of J in theW ,p(x)

 (�) topology.
Applying this theorem, we have the following special form.

Theorem . Let (M), (.) hold and let u ∈ X be a local minimizer (resp. a strictly local
minimizer) of J in the C(�) topology. Then u is a local minimizer (resp. a strictly local
minimizer) of J in the X topology.

Applying Theorem . of [], we can easily get the following strongmaximumprinciple.

Theorem . Suppose that p(x) ∈ C+(�)∩C(�), u ∈ X, u≥  and u �≡  in �. If

–M(t)
(
div

(|∇u|p(x)–∇u
)
– d(x)|u|q(x)–u) ≥ ,

where t =
∫
�
( 
p(x) |∇u|p(x) + 

q(x)d(x)|u|q(x))dx,M(t) ≥ m > ,  ≤ d(x) ∈ L∞(�), q(x) ∈ C(�)
with p(x) ≤ q(x)≤ p*(x), then u >  in �.

Now we give a special strong comparison principle for the p(x)-Kirchhoff.

Theorem . Let (M) hold and suppose that u, v ∈ C(�), u≥ v in �, g,h ∈ L∞(�),

–M
(
I(u)

)
�p(x)u = g(x)≥ h(x) = –M

(
I(v)

)
�p(x)v in �, (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/283
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and g(x) �≡ h(x) in �. If

∂u
∂n

> ,
∂v
∂n

>  on ∂�,

where n is the inward unit normal on ∂�, then u > v in � and there is a positive constant
ε such that

∂(u – v)
∂n

≥ ε on ∂�. (.)

Proof We denote by ny the inward unit normal at y ∈ ∂�. For δ > , set �δ = {x ∈ � :
dist(x, ∂�) < δ}. Denoting A(x,η) =M(I(η))|η|p(x)–η, as in the proof of [], we have

u – v ≥  in �δ .

We claim that u– v �≡  in �δ . Indeed, if u≡ v in �δ , then g ≡ h in �δ , and consequently
g(x) �≡ h(x) in � \ �δ . Take ϕ ∈ X such that ϕ >  in �, ϕ =  on � \ �δ . By (.) and the
property of ϕ, we have

∫
�\�δ

g(x)ϕ(x)dx =M
(∫

�\�δ


p(x)

|∇u|p(x) dx
)∫

�\�δ

|∇u|p(x)–∇u∇ϕ dx = 

=M
(∫

�\�δ


p(x)

|∇v|p(x) dx
)∫

�\�δ

|∇v|p(x)–∇v∇ϕ dx

=
∫

�\�δ

h(x)ϕ(x)dx,

which contradicts
∫
�
g(x)ϕ(x)dx >

∫
�
h(x)ϕ(x)dx. Hence the claim is true. So, by the well-

known strong maximum principle for linear elliptic equations, u > v in �δ and (.) holds.
Setting S = {x ∈ � : u(x) = v(x)}, then S is a compact subset of�. By Theorem .(), S = ∅,
hence u > v in � and the proof is complete. �

The following theorem provides a method to find a positive C local minimizer of the
integral functional J in the C topology.

Theorem . Let (M) hold and suppose that u, v ∈ X are a subsolution and a superso-
lution of (.) respectively, –M(I(u))�p(x)u = g(x), –M(I(v))�p(x)v = h(x), g,h ∈ L∞(�),
 ≤ g ≤ h, g(x) �≡ h(x) and  ≤ u ≤ v in �. Suppose that p ∈ C(�), f ∈ C(� ×R,R) sat-
isfies the condition of Theorem .. If neither u nor v is a solution of (.), or neither u
nor v is a minimizer of J on [u, v] ∩ X in the case of being a solution of (.), then there
exists u* ∈ [u, v] ∩ C,α(�) such that J(u*) = inf{J(u) : u ∈ [u, v] ∩ X}, u* is a solution
of (.) and u* is a local minimizer of J in the C topology.

Proof The proof is similar to the proof of [], we omit it here (for details, see the proof of
Theorem . in []). �

http://www.journalofinequalitiesandapplications.com/content/2012/1/283
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4 Applications
As an application of the above abstract theorems, let us consider the following eigenvalue
problem:

⎧⎨
⎩–M(

∫
�


p(x) |∇u|p(x) dx)div(|∇u|p(x)–∇u) = λf (x,u) +μ|u|q(x)–u in �,

u >  in �, u =  on ∂�,
(.)

where � is a bounded smooth domain in R
N , p ∈ C(�), q ∈ C(�), q– > p+, f ∈ C(� ×

R,R), f (x, t) ≥  for x ∈ � and t ≥ , f (x, t) is nondecreasing in t ≥ , μ ≥  is fixed. The
energy functional associated with the problem (.) is

Jλ(u) = M̂
(∫

�


p(x)

|∇u|p(x) dx
)
– λ

∫
�

F(x,u)dx –μ

∫
�

|u|q(x)
q(x)

dx, ∀u ∈ X,

where F(x, t) =
∫ t
 f (x, s)ds.

Firstly, we recall the (PS)c condition and the mountain pass lemma which we shall use
later.

Definition . Let X be a Banach space. We say that I satisfies the (PS)c condition in X if
any sequence {un} ⊂ X, such that |I(un)| ≤ c and I ′(un) →  as n→ +∞, has a convergent
subsequence, where (PS) means Palais-Smale.

Lemma . (see []) Let X be a Banach space, ϕ ∈ C(X,R), e ∈ X and r >  be such that
‖e‖ > r and

b := inf‖u‖=rϕ(u) > ϕ() ≥ ϕ(e).

If ϕ satisfies the (PS)c condition with

c := inf
γ∈�

max
t∈[,]

ϕ
(
γ (t)

)
,

� :=
{
γ ∈ C

(
[, ],X

)
: γ () = ,γ () = e

}
,

then c is a critical value of ϕ.

The main results are the following.

Theorem . Suppose that f satisfies the condition either
(i) f (x, ) �≡  in �, or
(ii) f (x, )≡  and there are an open set U ⊂ �, a closed ball B(x,ρ)⊂U , some positive

constants r >  and c such that f (x, t)≥ ctr– for x ∈ B(x,ρ) and t ∈ [, ], and
r < p(x) for x ∈ ∂U .

Then we have the following assertions:
() For sufficiently small λ > , (.) has a solution uλ which is a local minimizer of Jλ in

the C topology.Moreover, ‖uλ‖C(�) →  as λ → .
() Define � = {λ >  : (.) has a solution uλ which is a local minimizer of Jλ in

the C topology} and � = {λ >  : (.) has a solution uλ}. Then � and � are both
intervals, inf� = inf� =  and � ⊃ int�.

http://www.journalofinequalitiesandapplications.com/content/2012/1/283
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() In addition, suppose that μ > , q(x) < p*(x) for x ∈ � and

∣∣f (x, t)∣∣ ≤ c
(
 + |t|r(x)) for x ∈ � and t ∈ R,

where r(x) < p*(x) for x ∈ � and r+ < q–. Then for each λ ∈ int�, (.) has at least
two solutions uλ and vλ such that uλ < vλ and uλ is a local minimizer of Jλ in the
W ,p(x) topology.

Proof () Take  <M < h, where h is as in Lemma., and let v = vM be the unique positive
solution of (.). Then by Lemma ., |v|∞ ≤ C*M/(p+–). Because q– > p+, we can choose
M small enough such that μ(C*M/(p+–))q–– < M

 , which implies that μvq(x)– < M
 . Let

λ >  be sufficiently small such that λf (x, v) < M
 . Then for such λ,

–M
(
I(v)

)
�p(x)v =M > λf (x, v) +μ|v|q(x)–v,

which shows that v is a supersolution of (.) and is not a solution of (.). By Theorem .,
v >  in � and ∂v

∂n >  on ∂�.
In the case when f satisfies the condition (i),  is a subsolution of (.) and  does not

satisfy the equation in (.). Moreover, by Theorem ., (.) has a solution uλ ∈ [, v] ∩
C(�), which is a local minimizer of Jλ in the C topology.
In the case when f satisfies the condition (ii),  satisfies the equation in (.). We claim

that  is not a minimizer of Jλ on [, v] ∩ X. To see this, noting Jλ() = , it is sufficient to
show that inf[,v]∩X Jλ(u) < . For δ > , denote Uδ = {x ∈ U : dist(x, ∂U) < δ}. By the con-
dition (ii), we can find sufficiently small positive constants ρ such that B(x,ρ)⊂U \Uδ ,
r < p–(Uδ) := inf{p(x) : x ∈ Uδ}. Define a function w ∈ C∞

 (U) such that  ≤ w ≤  and
w =  on U \Uδ . Then for sufficiently small  > t > , we have that tw ∈ [, v] and

Jλ(tw) ≤ M̂
(∫

Uδ

tp(x)

p(x)
|∇w|p(x) dx

)
– λ

∫
U\Uδ

F(x, tw)dx

≤ M
(∫

Uδ

tp(x)

p(x)
|∇w|p(x) dx

)∫
Uδ

tp(x)

p(x)
|∇w|p(x) dx – λ

∫
U\Uδ

F(x, tw)dx

≤ tp
–(Uδ )M

(∫
Uδ


p(x)

|∇w|p(x) dx
)∫

Uδ


p(x)

|∇w|p(x) dx – cλtr
∫
U\Uδ

wr dx

< ,

which shows that the claim is true. By Theorem ., there exists uλ ∈ [, v]∩C,α(�) such
that Jλ(uλ) = inf[,v]∩X Jλ(u), uλ is a solution of (.) and uλ is a local minimizer of Jλ in the
C topology.
When λ → , we can take M → , consequently |vM|∞ →  and |uλ|∞ → . Further-

more, ‖vM‖X →  and ‖vM‖C(�) → . Assertion () is proved.
() The proof is similar to the proof of [], we omit it here (for details, see the proof of

Theorem . in []).
() Note that, under additional assumptions, it is easy to verify that Jλ ∈ C(X,R) and

Jλ satisfies the (PS)c condition for all λ. Now let λ ∈ int� ⊂ � be given arbitrarily. Take
λ,λ ∈ � with λ < λ < λ, and let uλ , uλ and uλ be the solutions of (.λ ), (.λ) and
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(.λ ) respectively, uλ ≤ uλ ≤ uλ , and let uλ be a local minimizer of Jλ in theC topology.
Then by Theorem ., uλ is also a local minimizer of Jλ in theW ,p(x) topology. Define

f̃λ(x, t) =

⎧⎨
⎩f (x, t) if t > uλ(x),

f (x,uλ(x)) if t ≤ uλ(x),

g̃λ(x, t) =

⎧⎨
⎩tq(x)– if t > uλ(x),

(uλ(x))q(x)– if t ≤ uλ(x).

Consider the problem

⎧⎨
⎩–M(

∫
�


p(x) |∇u|p(x) dx)div(|∇u|p(x)–∇u) = λ̃fλ(x,u) + μ̃gλ(x,u) in �,

u >  in �, u =  on ∂�,
(.)

and denote the associated functional to (.) by J̃λ. It is easy to see that uλ and uλ are a
subsolution and a supersolution of (.), respectively. By Theorem ., there exists u*λ ∈
[uλ ,uλ ]∩C(�) such that u*λ is a solution of (.) and is a local minimizer of J̃λ in the C

topology. ByTheorem.(), we can see that u*λ ≥ uλ and consequently u*λ is also a solution
of (.λ). If u*λ �= uλ, then assertion () already holds, hence we can assume that u*λ = uλ.
Now uλ is a local minimizer of J̃λ in the C topology, and so also in the W ,p(x) topology.
We can assume that uλ is a strictly local minimizer of J̃λ in theW ,p(x) topology, otherwise
we have obtained assertion (). It is easy to verify that, under the additional assumptions
in the statement (), J̃λ ∈ C(X,R) and J̃λ satisfies the (PS)c condition. From q– > p+, (M)
and μ > , it follows that inf{̃Jλ(u) : u ∈ X} = –∞. Using Lemma ., we know that (.)
has a solution vλ such that vλ �= uλ, as a solution of (.), vλ must satisfy vλ ≥ uλ, and
consequently, by Theorem . and Theorem ., vλ > uλ. Noting that vλ is also a solution
of (.λ) since vλ ≥ uλ, thus the proof of assertion () is complete. �

Note that in the case of Theorem .() and (), the variational method cannot be used
directly because we do not suppose that q(x) ≤ p*(x) and do not restrict the growth rate
of f .
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