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Abstract
In this paper, existence, localization and uniqueness results of solutions to elliptic
Dirichlet boundary value problems are established. The approach is based on the
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1 Introduction
In this paper, we consider the boundary value problem

⎧⎨
⎩
–div(|∇u|p(x)–∇u) = f (x,u) in �,

u =  on ∂�,
(.)

where � ⊂ R
N is a nonempty bounded open set with smooth boundary ∂�, p = p(x) ∈

C+(�) with  < p– :=min� p(x)≤ p+ :=max� p(x) < +∞ and f :�×R →R is a continuous
function.
The operator –div(|∇u|p(x)–∇u) is said to be the p(x)-Laplacian and becomes p-

Laplacian when p(x) ≡ p (a constant). The p(x)-Laplacian possesses more complicated
nonlinearities than the p-Laplacian; for example, it is inhomogeneous. The study of vari-
ous mathematical problems with a variable exponent growth condition has received con-
siderable attention in recent years. These problems are interesting in applications and
raise many difficult mathematical problems. One of the most studied models leading to a
problem of this type is themodel ofmotion of electro-rheological fluids, which are charac-
terized by their ability to drastically change themechanical properties under the influence
of an exterior electro-magnetic field [, ]. Problems with variable exponent growth con-
ditions also appear in the mathematical modeling of stationary thermo-rheological vis-
cous flows of non-Newtonian fluids and in the mathematical description of the processes
filtration of an ideal baro-tropic gas through a porous medium [, ]. Another field of ap-
plication of equations with variable exponent growth conditions is image processing [].
The variable nonlinearity is used to outline the borders of the true image and to eliminate
possible noise.We refer the reader to [–] for an overview of and references on this sub-
ject, and to [–] for the study of the p(x)-Laplacian equations and the corresponding
variational problems.
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In recent years, many authors have studied the existence of solutions for problem (.)
from several points of view and with different approaches (see, for example, [–]).
A useful method for the investigation of solutions to semilinear problems is based on the
Leray-Schauder continuation principle, or equivalently, on Schaefers fixed point theorem.
For example, in [] this method was used for solutions in Hölder spaces, while in [],
solutions were found in Sobolev spaces.
The aim of this paper is to present new existence, localization and uniqueness results for

solutions to problem (.) under suitable conditions on the nonlinearity f . Our approach
is based on regularity results for the solutions of linear Dirichlet problems, the nonlinear
alternative of Leray-Schauder (see []), the Brouwer fixed point theorem (see []) and
the Galerkinmethod.We notice that our partial results of the present paper aremotivated
by the papers [] and [] where the authors have obtained some results for semilinear
and quasilinear elliptic boundary value problems, respectively. By the Galerkin method,
we also establish the results of existence and uniqueness of a solution for problem (.).
We also would like to point out that the proof of Theorem  of [] is wrong since (–�p)–

is not a linear operator. In this paper, we give a key lemma that can be used to overcome
this difficulty.
The rest of this paper is organized as follows. In Section , we present some necessary

preliminary knowledge on variable exponent Sobolev spaces. In Section , we shall use a
nonlinear alternative of Leray-Schauder to prove the existence of solutions for problem
(.). In Section , by the Galerkin method, we shall establish the results of existence and
uniqueness of a solution for problem (.).

2 Preliminaries
In order to discuss problem (.), we need some theories onW ,p(x)

 (�) whichwe call a vari-
able exponent Sobolev space. Firstly, we state some basic properties of spaces W ,p(x)

 (�)
which will be used later (for details, see []). Denote by S(�) the set of all measurable real
functions defined on �.
Write

C+(�) =
{
h : h ∈ C(�),h(x) >  for any x ∈ �

}

and

Lp(x)(�) =
{
u ∈ S(�) :

∫
�

∣∣u(x)∣∣p(x) dx < +∞
}

with the norm

|u|Lp(x)(�) = |u|p(x) = inf

{
λ >  :

∫
�

∣∣∣∣u(x)λ

∣∣∣∣
p(x)

dx ≤ 
}
,

and

W ,p(x)(�) =
{
u ∈ Lp(x)(�) : |∇u| ∈ Lp(x)(�)

}

with the norm

‖u‖W ,p(x)(�) = |u|Lp(x)(�) + |∇u|Lp(x)(�).

http://www.boundaryvalueproblems.com/content/2012/1/99
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Denote byW ,p(x)
 (�) the closure of C∞

 (�) inW ,p(x)(�). The spaces Lp(x)(�),W ,p(x)(�)
andW ,p(x)

 (�) are separable and reflexive Banach spaces.

Proposition . (See []) Set ρ(u) =
∫
�

|u(x)|p(x) dx. For any u ∈ Lp(x)(�), then
() for u 
= , |u|p(x) = λ ⇔ ρ( u

λ
) = ;

() |u|p(x) <  (= ; > ) ⇔ ρ(u) <  (= ; > );
() if |u|p(x) > , then |u|p–p(x) ≤ ρ(u)≤ |u|p+p(x);
() if |u|p(x) < , then |u|p+p(x) ≤ ρ(u)≤ |u|p–p(x);
() limk→+∞ |uk|p(x) =  ⇐⇒ limk→+∞ ρ(uk) = ;
() limk→+∞ |uk|p(x) = +∞ ⇐⇒ limk→+∞ ρ(uk) = +∞.

In W ,p(x)
 (�) the Poincaré inequality holds, that is, there exists a positive constant C

such that

|u|Lp(x)(�) ≤ C|∇u|Lp(x)(�), ∀u ∈ W ,p(x)
 (�).

So, |∇u|Lp(x)(�) is a norm equivalent to the norm ‖u‖W ,p(x)(�) in the space W ,p(x)
 (�). We

shall use the equivalent norm in the following discussion and write ‖u‖ = |∇u|Lp(x)(�) for
simplicity.

Proposition . () [, Theorem .] If f satisfies the sub-critical growth condition

∣∣f (x, t)∣∣ ≤ c
(
 + |t|q(x)–), ∀x ∈ �,∀t ∈R, (.)

where q ∈ C+(�) and q(x) < p*(x), ∀x ∈ �, where p*(x) is the Sobolev critical exponent
(p*(x) = Np(x)/(N – p(x)) if p(x) < N and p* = +∞ if p(x) ≥ N), then u ∈ L∞(�) for every
weak solution u of (.).
() [, Theorem .] Let u ∈W ,p(x)

 (�)∩ L∞(�) be a solution of (.). If the function p is
log-Hölder continuous on �, i.e., there is a positive constant H such that

∣∣p(x) – p(y)
∣∣ ≤ H

– log |x – y| for x, y ∈ � with |x – y| ≤ 

, (.)

then u ∈ C,α(�) for some α ∈ (, ).
() [, Theorem .] If in (), the condition (.) is replaced by that p is Hölder continuous

on �, then u ∈ C,α(�) for some α ∈ (, ).

From [], we know that, for a given h(x) ∈ L
q(x)

q(x)– (�), where q(x) satisfies (.), the prob-
lem

⎧⎨
⎩
–div(|∇u|p(x)–∇u) = h(x) in �,

u =  on ∂�
(.)

has a unique solution u ∈ W ,p(x)
 (�). We denote by K(h) := u the unique solution. K is

called the solution operator for problem (.). It is well known that the solution operator
K is increasing (see Remark . of []). From the Proposition . and the embedding
theorems, we can obtain the properties of the solution operator K as follows.

http://www.boundaryvalueproblems.com/content/2012/1/99
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Proposition . () (See []) The mapping K : L
q(x)

q(x)– (�) → W ,p(x)
 (�) is continuous.

Moreover, the mapping K : L
q(x)

q(x)– (�) → Lq(x)(�) is completely continuous since the em-
bedding W ,p(x)

 (�)→ Lq(x)(�) is compact.
() (See []) If p is log-Holder continuous on �, then the mapping K : L∞(�)→ C,α(�)

is bounded, and hence the mapping K : L∞(�)→ C(�) is completely continuous.
() (See []) If p is Hölder continuous on �, then the mapping K : L∞(�) → C,α(�) is

bounded, and hence the mapping K : L∞(�)→ C(�) is completely continuous.

We note that the method of [] cannot be directly used in this paper since K is not a
linear operator. So, we give a key lemma that will be used in Section  to overcome this
difficulty.

Lemma . Let M be a positive constant and h(x) ∈ L
q(x)

q(x)– (�), then there exists one point
ξ ∈ � such that

K(Mh) =M


p(ξ )–K(h),

where K is the solution operator for problem (.).

Proof We assume that u is a solution of problem (.), then we have u = K(h). From (.),
we can also show that

∫
�


p(x)

|∇u|p(x) dx =
∫

�

h(x)u(x)dx. (.)

By (.) and mean value theorem, for any positive constant C, we can show that there
exists one point ξ ∈ � such that

∫
�


p(x)

∣∣∇(Cu)
∣∣p(x) dx = Cp(ξ )

∫
�


p(x)

|∇u|p(x) dx

= Cp(ξ )
∫

�

h(x)u(x)dx

=
∫

�

Cp(ξ )–h(x)Cu(x)dx,

that is to say,

K
(
Cp(ξ )–h

)
= CK(h).

LetM = Cp(ξ )–, then C =M


p(ξ )– . �

3 Existence of a solution via the alternative of Leray-Schauder
Here and in the sequel, E will denote the space

C(�) =
{
u ∈ C(�) : u =  on ∂�

}

endowed with the sup-norm

‖u‖ = sup
x∈�

∣∣u(x)∣∣.

http://www.boundaryvalueproblems.com/content/2012/1/99
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Now, we state an existence and localization principle for problem (.).

Theorem . () Assume that f satisfies (.), p(x) ∈ C+(�) and there is a constant r > ,
independent of λ > , with

|u|Lq(x)(�) 
= r, (.)

for any solution u ∈W ,p(x)
 (�) to

⎧⎨
⎩
–div(|∇u|p(x)–∇u) = λf (x,u) in �,

u =  on ∂�
(.)

and for each λ ∈ (, ). Then the boundary value problem (.) has at least one solution
u ∈ W ,p(x)

 (�) with |u|Lq(x)(�) ≤ r.
() Assume that p(x) is log-Hölder continuous and there is a constant r > , independent

of λ > , with

‖u‖ 
= r, (.)

for any solution u ∈ C,α(�) to (.) and for each λ ∈ (, ). Then the boundary value prob-
lem (.) has at least one solution u ∈ C,α(�) with ‖u‖ ≤ r.
() Assume that p(x) is Hölder continuous and there is a constant r > , independent

of λ > , with (.) for any solution u ∈ C,α(�) to (.) and for each λ ∈ (, ). Then the
boundary value problem (.) has at least one solution u ∈ C,α(�) with ‖u‖ ≤ r.

We note that Theorem . not only guarantees the existence of a solution, but also gives
information about its localization. Since the proofs of Theorem .()-() are identical, we
shall just prove Theorem .(). Firstly, we recall the following well-known results:

Lemma . (Nonlinear alternative of Leray-Schauder, []) Let B[, r] denote the closed
ball in a Banach space E with radius r, and let T : B[, r]→ E be a compact operator. Then
either

(i) the equation λTu = u has a solution in B[, r] for λ = , or
(ii) there exists an element u ∈ E with ‖u‖E = r satisfying λTu = u for some  < λ < .

Proof of Theorem .() According to Proposition ., the operator K from L∞(�) to
C(�) is well defined and compact. We shall apply the nonlinear alternative of Leray-
Schauder to E and to the operator T : E → E, with Tu = KFu, where F : C(�) → C(�) is
given by (Fu)(x) = f (x,u(x)). On the other hand, it is clear that the fixed points of T are the
solutions of problem (.). Now the conclusion follows from Lemma . since condition
(ii) is excluded by hypothesis. �

Theorem . immediately yields the following existence and localization results.

Corollary . () Assume that f satisfies (.), p(x) ∈ C+(�) and there exist nonnegative
continuous functions a(x), b(x) and a continuous nondecreasing functionψ :R+ →R

+ such

http://www.boundaryvalueproblems.com/content/2012/1/99
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that

∣∣f (x,u)∣∣ ≤ a(x)ψ
(|u|) + b(x), ∀(x,u) ∈ � ×R. (.)

Suppose, in addition, that there exists a real number r >  such that

r ≥ (
ψ(r) + 

) 
p––

∣∣K(
c(x)

)∣∣
Lq(x)(�), (.)

where c(x) =max{a(x),b(x)} = 
 (a(x) + b(x) + |a(x) – b(x)|). Then the boundary value prob-

lem (.) has at least one solution in W ,p(x)
 (�) with |u|Lq(x)(�) ≤ r.

() Assume that p(x) is log-Hölder continuous and (.) holds. Suppose, in addition, that
there exists a real number r >  such that

r ≥ (
ψ(r) + 

) 
p––

∥∥K(
c(x)

)∥∥
. (.)

Then the boundary value problem (.) has at least one solution in C,α(�) with ‖u‖ ≤ r.
() Assume that p(x) is Hölder continuous and (.), (.) hold. Then the boundary value

problem (.) has at least one solution in C,α(�) with ‖u‖ ≤ r.

Since the proofs of Corollary .()-() are identical, we shall just prove Corollary .().

Proof of Corollary .() In order to apply Theorem .(), we have to show that condition
(.) holds true for any solution u ∈ C,α(�) to (.). Assume u ∈ C,α(�) is any solution
to (.) for some λ ∈ (, ) with ‖u‖ = r. Then

u = λTu = λKFu.

Furthermore, for all x ∈ �, by the monotonicity of K and Lemma ., we have

|u| = λ
∣∣KFu(x)∣∣

≤ λ
∣∣K(

a(x)ψ
(|u|) + b(x)

)∣∣
≤ λ

∣∣K(
a(x)ψ(r) + b(x)

)∣∣
≤ λ

∣∣K(
c(x)

(
ψ(r) + 

))∣∣
≤ λ

(
ψ(r) + 

) 
p(ξ )–

∣∣K(
c(x)

)∣∣
≤ λ

(
ψ(r) + 

) 
p(ξ )–

∥∥K(
c(x)

)∥∥


≤ λ
(
ψ(r) + 

) 
p––

∥∥K(
c(x)

)∥∥
.

Taking the supremum in the above inequality, we obtain

‖u‖ ≤ λ
(
ψ(r) + 

) 
p––

∥∥K(
c(x)

)∥∥
.

Therefore, r ≤ λr < r since λ ∈ (, ) and ‖u‖ = r. This is a contradiction. �

We note that condition (.) can be satisfied under some suitable conditions.

http://www.boundaryvalueproblems.com/content/2012/1/99
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Theorem . Suppose that p(x) ∈ C+(�), f : � × R → R is a continuous function and
satisfies

lim|s|→+∞
f (x, s)
sp––

= , (.)

uniformly with respect to x ∈ �. Then the boundary value problem (.) has a solution
u ∈ W ,p(x)

 (�) with |u|Lp– (�) < r for some r ∈R
+.

Proof From (.) it follows that, for all ε > , there exists Cε >  such that

∣∣f (x, s)∣∣ ≤ Cε + ε|s|p––. (.)

Then, according to Theorem . of [], f induces aNemytsky operator onX = Lp–(�), still
denoted by f . Setting T(u) = Kf (u), according to Proposition ., T ∈ C(X,X) is compact
and (.) can be written in the form u = Tu, u ∈ X. Let us show that there exists r >  such
that the homotopy h(t,u) = u–tT(u) is admissible inBr = {u ∈ X : |u|Lp– (�) < r}. Otherwise,
there exist un ∈ X, with |un|Lp– (�) → +∞, and tn ∈ [, ] such that un = tnT(un). This is
equivalent to –div(|∇un|p(x)–∇un) = tnf (x,un), with un ∈ W ,p(x)

 (�). Taking un as a test
function, using (.) and the fact that tn ≤ , we get

∫
�

|∇un|p(x) dx ≤ tn
∫

�

∣∣f (x,un)un∣∣dx ≤ Cε

∫
�

|un|dx + ε

∫
�

|un|p– dx.

Case . ‖u‖ ≥ .
In this case, using the Hölder and Poincaré inequality, we deduce

cp
–

 |un|p–Lp– (�) ≤ Cε|un|Lp– (�) + ε|un|p–Lp– (�),

where c is the embedding constant of W ,p(x)
 ↪→ Lp–(�). If we take ε such that ε < cp

–

 ,
this equation implies that ‖un‖Lp– (�) ≤ C, for some C > , a contradiction.
Case . ‖u‖ ≤ .
In this case, using the Hölder and Poincaré inequalities, we deduce

cp
+

 |un|p+Lp– (�) ≤ Cε|un|Lp– (�) + ε|un|p–Lp– (�) ≤ Cε|un|Lp– (�) + ε|un|p+Lp– (�).

If we take ε such that ε < cp
+

 , this equation implies that ‖un‖Lp– (�) ≤ C, for some C > ,
a contradiction again.
Thus the homotopy h(t,u) = u – tT(u) is admissible on the ball Br . Using the homotopy

invariance, it follows that deg(I – T ,Br , ) = deg(I,Br , ) = , and hence there exists u ∈ Br

such that u = T(u), giving rise to a solution of problem (.). �

Remark . We note that the fact that the homotopy h(t,u) = u – tT(u) is admissible in
Br implies |u|Lp– (�) 
= r for any solution of (.).

Using Theorem ., Theorem . and Remark ., we easily get:

Corollary . Assume p(x) ∈ C+(�) and f satisfies (.), then the boundary value problem
(.) has at least one solution u ∈ W ,p(x)

 (�) with |u|Lp– (�) ≤ r for some r > .

http://www.boundaryvalueproblems.com/content/2012/1/99
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4 Existence and uniqueness via the Galerkinmethod
In this section, we shall use the Brouwer fixed point theorem and the Galerkin method to
prove the existence of a solution for problem (.).

Theorem . Assume that there exist constant a >  and α(x) ∈ C+(�) with α+ < p– such
that

f (x,u)u≤ a
(
 + |u|α(x)), ∀x ∈ �,u ∈R (.)

with

a <


Cα+
, (.)

where C is the embedding constant ofW ,p(x)
 (�) ↪→ Lα(x)(�). Then problem (.) has at least

one weak solution. Besides, any solution u of (.) satisfies the estimate

‖u‖ ≤ R :=max

{(
a|�|

 – Cα+

)
, 

}
. (.)

Proof Because W ,p(x)
 (�) is a reflexive and separable Banach space, there exist {ej} ⊂

W ,p(x)
 (�) and {e*j } ⊂ (W ,p(x)

 (�))* such that

X = span{ej : j = , , . . .}, X* = span
{
e*j : j = , , . . .

}
,

and

〈
ei, e*j

〉
=

⎧⎨
⎩
, i = j,

, i 
= j.

For convenience, let us put

Vn = Span{e, . . . , en}.

Then Vn is isometric to R
n. In fact, each v ∈ Vn is uniquely associated to η = (η, . . . ,ηn) ∈

R
n by the relation v =

∑n
k= ηkek .We search for solutions un ∈ Vn of the approximate prob-

lem
∫

�

|∇un|p(x)–∇un∇ek dx =
∫

�

f (x,un)ek dx, k = , , . . . ,n. (.)

To solve this algebraic system, we define the operator Pn :Rn →R
n,

(Pnu)k =
∫

�

|∇u|p(x)–∇u∇ek dx –
∫

�

f (x,u)ek dx, u ∈ Vn.

We note that Pn is continuous from the continuity of f (x,u) with respect to u. Therefore,
we can use the following form of the Brouwer fixed point theorem: if there exists R > 
such that 〈Pnu,u〉 ≥  whenever ‖u‖ = R, then Pn has a root u satisfying ‖u‖ ≤ R (see,

http://www.boundaryvalueproblems.com/content/2012/1/99
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e.g., []). From (.), Proposition . and the Poincaré inequality, we have for u ∈ Vn with
‖u‖ ≥ 

〈Pnu,u〉 ≥ ‖u‖p– –
∫

�

f (x,u)udx

≥ ‖u‖p– – aCα+‖u‖α+ – a|�|.

This shows, from (.), the existence of R > , depending only on C , a and |�|, such that
〈Pnu,u〉 ≥  if ‖u‖ = R. Then system (.) has a solution un ∈ Vn satisfying

‖un‖ ≤ R, ∀n ∈N.

From this estimate, going to a subsequence if necessary, there is u such that

un ⇀ u weakly inW ,p(x)
 (�).

Besides, since W ,p(x)
 (�) → Lα(x)(�) compactly and the Nemytsky map Nf is continuous

from Lα(x)(�) to Lα′(x)(�) (see []). Then fixing k in (.) and letting n → +∞, we conclude
that

∫
�

|∇u|p(x)–∇u∇ek dx =
∫

�

f (x,u)ek dx, k = , , , . . . . (.)

From the completeness of {ek}, identity (.) holds with ek replaced by any ϕ ∈W ,p(x)
 (�),

we get

∫
�

|∇u|p(x)–∇u∇ϕ dx =
∫

�

f (x,u)ϕ dx,

which shows that u is in fact a solution of problem (.). Finally, if u is any solution of
problem (.), then

∫
�

|∇u|p(x) dx = ∫
�
f (x,u)udx. Therefore, either ‖u‖ ≤  or

‖u‖p– ≤ aCα+‖u‖α+ + a|�| ≤ aCp–‖u‖α+ + a|�| (.)

and (.) follows. �

Theorem . Let the assumptions of Theorem . hold, with (.) replaced by

(
f (x,u) – f (x, v)

)
(u – v) ≤ , ∀x ∈ �, ∀u, v ∈R. (.)

Then problem (.) has exactly one solution.

Proof Taking v =  in (.), we get

f (x,u)u≤ f (x, )u≤ max
x∈�

∣∣f (x, )∣∣ +max
x∈�

∣∣f (x, )∣∣|u|α(x). (.)

Setting a := maxx∈� |f (x, )| in (.), we get (.). Hence, the existence part follows from
Theorem .. Now let u and v be two solutions of problem (.). Putting w = u– v, by (.)

http://www.boundaryvalueproblems.com/content/2012/1/99
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and Theorem . of [], we have

 ≤
∫

�

(|∇u|p(x)–∇u – |∇v|p(x)–∇v
)∇wdx =

∫
�

(
f (x,u) – f (x, v)

)
wdx ≤ .

We conclude that w≡ , and hence u = v. �
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