99 research outputs found

    Patients with Alzheimer's disease dementia show partially preserved parietal 'hubs' modeled from resting-state alpha electroencephalographic rhythms

    Get PDF
    IntroductionGraph theory models a network by its nodes (the fundamental unit by which graphs are formed) and connections. 'Degree' hubs reflect node centrality (the connection rate), while 'connector' hubs are those linked to several clusters of nodes (mainly long-range connections). MethodsHere, we compared hubs modeled from measures of interdependencies of between-electrode resting-state eyes-closed electroencephalography (rsEEG) rhythms in normal elderly (Nold) and Alzheimer's disease dementia (ADD) participants. At least 5 min of rsEEG was recorded and analyzed. As ADD is considered a 'network disease' and is typically associated with abnormal rsEEG delta (<4 Hz) and alpha rhythms (8-12 Hz) over associative posterior areas, we tested the hypothesis of abnormal posterior hubs from measures of interdependencies of rsEEG rhythms from delta to gamma bands (2-40 Hz) using eLORETA bivariate and multivariate-directional techniques in ADD participants versus Nold participants. Three different definitions of 'connector' hub were used. ResultsConvergent results showed that in both the Nold and ADD groups there were significant parietal 'degree' and 'connector' hubs derived from alpha rhythms. These hubs had a prominent outward 'directionality' in the two groups, but that 'directionality' was lower in ADD participants than in Nold participants. DiscussionIn conclusion, independent methodologies and hub definitions suggest that ADD patients may be characterized by low outward 'directionality' of partially preserved parietal 'degree' and 'connector' hubs derived from rsEEG alpha rhythms

    Phase and amplitude electroencephalography correlations change with disease progression in people with idiopathic rapid eye-movement sleep behavior disorder

    Get PDF
    Study Objectives Increased phase synchronization in electroencephalography (EEG) bands might reflect the activation of compensatory mechanisms of cognitive decline in people with neurodegenerative diseases. Here, we investigated whether altered large-scale couplings of brain oscillations could be linked to the balancing of cognitive decline in a longitudinal cohort of people with idiopathic rapid eye-movement sleep behavior disorder (iRBD). Methods We analyzed 18 patients (17 males, 69.7 +/- 7.5 years) with iRBD undergoing high-density EEG (HD-EEG), presynaptic dopaminergic imaging, and clinical and neuropsychological (NPS) assessments at two time points (time interval 24.2 +/- 5.9 months). We thus quantified the HD-EEG power distribution, orthogonalized amplitude correlation, and weighted phase-lag index at both time points and correlated them with clinical, NPS, and imaging data. Results Four patients phenoconverted at follow-up (three cases of parkinsonism and one of dementia). At the group level, NPS scores decreased over time, without reaching statistical significance. However, alpha phase synchronization increased and delta amplitude correlations decreased significantly at follow-up compared to baseline. Both large-scale network connectivity metrics were significantly correlated with NPS scores but not with sleep quality indices or presynaptic dopaminergic imaging data. Conclusions These results suggest that increased alpha phase synchronization and reduced delta amplitude correlation may be considered electrophysiological signs of an active compensatory mechanism of cognitive impairment in people with iRBD. Large-scale functional modifications may be helpful biomarkers in the characterization of prodromal stages of alpha-synucleinopathies.Peer reviewe

    Functional cortical source connectivity of resting state electroencephalographic alpha rhythms shows similar abnormalities in patients with mild cognitive impairment due to Alzheimer's and Parkinson's diseases

    Get PDF
    Objective: This study tested the hypothesis that markers of functional cortical source connectivity of resting state eyes-closed electroencephalographic (rsEEG) rhythms may be abnormal in subjects with mild cognitive impairment due to Alzheimer's (ADMCI) and Parkinson's (PDMCI) diseases compared to healthy elderly subjects (Nold). Methods: rsEEG data had been collected in ADMCI, PDMCI, and Nold subjects (N = 75 for any group). eLORETA freeware estimated functional lagged linear connectivity (LLC) from rsEEG cortical sources. Area under receiver operating characteristic (AUROC) curve indexed the accuracy in the classification of Nold and MCI individuals. Results: Posterior interhemispheric and widespread intrahemispheric alpha LLC solutions were abnormally lower in both MCI groups compared to the Nold group. At the individual level, AUROC curves of LLC solutions in posterior alpha sources exhibited moderate accuracies (0.70-0.72) in the discrimination of Nold vs. ADMCI-PDMCI individuals. No differences in the LLC solutions were found between the two MCI groups. Conclusions: These findings unveil similar abnormalities in functional cortical connectivity estimated in widespread alpha sources in ADMCI and PDMCI. This was true at both group and individual levels. Significance: The similar abnormality of alpha source connectivity in ADMCI and PDMCI subjects might reflect common cholinergic impairment. (C) 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved

    How future surgery will benefit from SARS-COV-2-related measures: a SPIGC survey conveying the perspective of Italian surgeons

    Get PDF
    COVID-19 negatively affected surgical activity, but the potential benefits resulting from adopted measures remain unclear. The aim of this study was to evaluate the change in surgical activity and potential benefit from COVID-19 measures in perspective of Italian surgeons on behalf of SPIGC. A nationwide online survey on surgical practice before, during, and after COVID-19 pandemic was conducted in March-April 2022 (NCT:05323851). Effects of COVID-19 hospital-related measures on surgical patients' management and personal professional development across surgical specialties were explored. Data on demographics, pre-operative/peri-operative/post-operative management, and professional development were collected. Outcomes were matched with the corresponding volume. Four hundred and seventy-three respondents were included in final analysis across 14 surgical specialties. Since SARS-CoV-2 pandemic, application of telematic consultations (4.1% vs. 21.6%; p &lt; 0.0001) and diagnostic evaluations (16.4% vs. 42.2%; p &lt; 0.0001) increased. Elective surgical activities significantly reduced and surgeons opted more frequently for conservative management with a possible indication for elective (26.3% vs. 35.7%; p &lt; 0.0001) or urgent (20.4% vs. 38.5%; p &lt; 0.0001) surgery. All new COVID-related measures are perceived to be maintained in the future. Surgeons' personal education online increased from 12.6% (pre-COVID) to 86.6% (post-COVID; p &lt; 0.0001). Online educational activities are considered a beneficial effect from COVID pandemic (56.4%). COVID-19 had a great impact on surgical specialties, with significant reduction of operation volume. However, some forced changes turned out to be benefits. Isolation measures pushed the use of telemedicine and telemetric devices for outpatient practice and favored communication for educational purposes and surgeon-patient/family communication. From the Italian surgeons' perspective, COVID-related measures will continue to influence future surgical clinical practice

    A paper-based device for glyphosate electrochemical detection in human urine: A case study to demonstrate how the properties of the paper can solve analytical issues

    No full text
    In the ever-growing demand for agricultural production, the use of pesticides and the consequential health risks is an issue that remains in the spotlight. The biomonitoring of pesticides in biological matrices is a mandatory task to point out the adverse effects on those people that are particularly exposed (i.e., occupational exposure) and to customize the use of pesticides for safer and more aware agricultural practices (i.e., precision agriculture). To overcome the bottleneck of costs and long sample treatments, we conceived a paper-based analytical device for the fast and smart detection of glyphosate in human urines, which is still the most widespread pesticide. Importantly, we demonstrate how to face the analytical interference given by uric acid to develop an electrochemical sensor for glyphosate detection using paper as a multifunctional material. To this purpose, a sample treatment was pointed out and integrated into a paper strip to decrease the level of uric acid in urines, finally delivering a ready-to-use device that combines lateral and vertical flow. The effective decrease of uric acid after the paper-integrated treatment is verified by direct oxidation in differential pulse voltammetry, whereas glyphosate detection can be carried out by enzyme inhibition assay in chronoamperometry. The system showed a limit of detection for glyphosate of 75 μg/L and a linear range of 100 - 700 μg/L. Additionally, the sustainability of the paper device was assessed and compared with reference chromatographic methods. Overall, this work provides an example of how to design green sensing solutions for addressing analytical challenges in line with the White Analytical Chemistry principles
    • …
    corecore